
I 解答例
1. ラグランジアン 𝐿 = 𝑇 −𝑉 の導出

𝐿 = 𝑇 −𝑉 =
1
2
𝑚( ¤𝑥2

1 + ¤𝑥2
2 + ¤𝑥2

3) −
{
𝑘𝑥2

1 +
1
2
𝑘 (𝑥2 − 𝑥1)2 + 1

2
𝑘 (𝑥3 − 𝑥2)2

}
,

もしくは，その変形。

2. 各階の運動方程式

𝑚 ¥𝑥1 + 3𝑘 𝑥1 − 𝑘 𝑥2 = 0 , (1)

𝑚 ¥𝑥2 − 𝑘 𝑥1 + 2𝑘 𝑥2 − 𝑘 𝑥3 = 0 , (2)

𝑚 ¥𝑥3 − 𝑘 𝑥2 + 𝑘 𝑥3 = 0 。 (3)

3. 行列表示

¥𝑿 + 𝑲𝑿 = 0, 𝑿 = ©­«
𝑥1
𝑥2
𝑥3

ª®¬ , 𝑲 =
𝑘

𝑚
©­«

3 −1 0
−1 2 −1
0 −1 1

ª®¬ 。
4. 固有振動数
固有解を 𝑿 (𝑡) = 𝑨𝑒𝑖𝜔𝑡 と置き det

(
𝐾 − 𝜔2𝐼

)
= 0より

−𝜆3 + 6𝜆2 − 9𝜆 + 2 = 0 , 𝜆 ≡ 𝑚

𝑘
𝜔2。

因数分解すると

(𝜆 − 2) (𝜆2 − 4𝜆 + 1) = 0 =⇒ 𝜆1 = 2 −
√

3, 𝜆2 = 2, 𝜆3 = 2 +
√

3。

よって

𝜔𝑖 =

√
𝑘

𝑚
𝜆𝑖 =

√
𝑘

𝑚

(
2 −

√
3
)
,

√
2𝑘
𝑚

,

√
𝑘

𝑚

(
2 +

√
3
)
, (𝑖 = 1, 2, 3)。

5. 数値例（最も遅い固有振動数）
最小固有角振動数 𝜔min =

√
𝑘
𝑚 (2 −

√
3) = 7.32 s−1

最小固有振動数
𝑓min =

𝜔min

2𝜋
= 1.17 Hz ≈ 1.2 Hz 。

6. 固有振動数を 3 Hz以上にするための柱本数
𝑛本の柱による水平方向ばね定数は 𝑘 = 𝑛𝑘0 (𝑘0 = 107 N/m)。
最小固有振動数について

𝑓min
√
𝑛 ≥ 3 Hz =⇒ 𝑛 ≥

(
3

1.17

)2
≈ 6.58。

柱本数は整数であるため 𝑛 = 7本 が最小。
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II 解答例 

1. S1 上の表面電荷密度：𝜎1 =
𝑄

4π𝑅1
2, 

S2 上の表面電荷密度：𝜎2 = −
𝑄

4π𝑅2
2

2. ガウスの法則を適用し，

𝐸(𝑟) =

{

0  (𝑟 < 𝑅1) 
𝑄

4π𝜀0𝑟
2
 (𝑅1 ≤ 𝑟 < 𝑅2) 

0  (𝑅2 ≤ 𝑟) 

静電ポテンシャルは， 

𝜙(𝑟) = −∫𝐸(𝑟)𝑑𝑟 =

{

𝑄

4π𝜀0𝑅1
 −

𝑄

4π𝜀0𝑅2
(𝑟 < 𝑅1) 

𝑄

4π𝜀0𝑟
−

𝑄

4π𝜀0𝑅2
 (𝑅1 ≤ 𝑟 < 𝑅2) 

0  (𝑅2 ≤ 𝑟) 

グラフは以下のようになる。 

3. 𝑈E =
𝑄2

8𝜋𝜀0
(
1

𝑅1
−

1

𝑅2
) 

4. リングを流れる電流: 
𝑄𝜔

4π
sin 𝜃 𝑑𝜃

このリングを流れる電流によって原点に生じる磁束密度は𝑑𝐵𝑧(𝜃) =
𝜇0𝑄𝜔 sin

3 𝜃

8π𝑅1
𝑑𝜃。 

5. 𝐵(𝑟 = 0) = ∫
𝜇0𝑄𝜔 sin

3 𝜃

8π𝑅1

𝜋

0
𝑑𝜃 =

𝜇0𝑄𝜔

6π𝑅1

6. 磁場に関するガウスの法則（div B = 0 の積分形∫ 𝑩 ∙ 𝒏𝑑𝑆 = 0
𝑆

）を S1 をまたぐ微小立方

体に適用すると，𝐵𝑟(𝑟 = 𝑅1
+) = 𝐵𝑟(𝑟 = 𝑅1

−)を得る（S1 で連続）。𝐵𝑟 =
𝜕𝛷B

𝜕𝑟
だから 

∑
𝑛𝛼𝑛
𝑅1

𝑃𝑛(cos 𝜃)

∞

𝑛=1

= ∑−
(𝑛 + 1)𝛽𝑛

𝑅1
𝑃𝑛(cos 𝜃)

∞

𝑛=1

 

→ 𝛼𝑛 = −
𝑛+1

𝑛
𝛽𝑛 



 

7. アンペールの法則を S1 をまたぐ微小長方

形の経路に適用すると 𝜇0𝑑𝐼 = {𝐵𝜃(𝑟 =

𝑅1
+) − 𝐵𝜃(𝑟 = 𝑅1

−)}𝑅1𝑑𝜃 = {
𝜕𝛷B

𝜕𝜃
(𝑟 = 𝑅1

+) −
𝜕𝛷B

𝜕𝜃
(𝑟 = 𝑅1

−)} 𝑑𝜃となる。 

ところで，4.から
𝑑𝐼

𝑑𝜃
=

𝑄𝜔

4π
sin𝜃 = −

𝑄𝜔

4π

𝑑 cos𝜃

𝑑𝜃
=

−
𝑄𝜔

4π

𝑑

𝑑𝜃
𝑃1(cos 𝜃)なので， 

−
𝜇0𝑄𝜔

4π
𝑃1(cos 𝜃) = 𝛷B(𝑟 = 𝑅1

+) − 𝛷B(𝑟 = 𝑅1
−)

= ∑(𝛽𝑛 − 𝛼𝑛)𝑃𝑛(cos 𝜃)

∞

𝑛=1

 

ルジャンドル多項式の直交性から𝛼𝑛 = 𝛽𝑛 =

0 (for 𝑛 ≠ 1)を得る。𝑛 = 1に関しては 

−
𝜇0𝑄𝜔

4π
= 𝛽1 − 𝛼1を得るが，6.の結果から，𝛼1 = −2𝛽1なので 

𝛼1 =
𝜇0𝑄𝜔

6π
, 𝛽1 = −

𝜇0𝑄𝜔

12π
 

 

8. 前問までの結果から 

𝛷B(𝑟 < 𝑅1) =
𝜇0𝑄𝜔𝑟

6π𝑅1
cos 𝜃 

𝛷B(𝑟 > 𝑅1) = −
𝜇0𝑄𝜔

12π

𝑅1
2

𝑟2
cos 𝜃 

𝑩(𝒓) = ∇𝛷Bから 

𝑟 < 𝑅1では 

𝑩(𝒓) =
𝜕𝛷B
𝜕𝑟

𝐞𝑟 +
1

𝑟

𝜕𝛷B
𝜕𝜃

𝐞𝜃 +
1

𝑟 sin𝜃

𝜕𝛷B
𝜕𝜙

𝐞𝜑 =
𝜇0𝑄𝜔

6π𝑅1
(cos 𝜃 𝐞𝑟 − sin 𝜃 𝐞𝜃) =

𝜇0𝑄𝜔

6π𝑅1
𝐞𝑧 

𝑟 > 𝑅1では 

𝑩(𝒓) = −
𝜇0𝑄𝜔𝑅1

2

12π
(−

2

𝑟3
cos 𝜃 𝐞𝑟 −

1

𝑟3
sin 𝜃 𝐞𝜃) =

𝜇0𝑄𝜔𝑅1
2

12π𝑟3
(2 cos 𝜃 𝐞𝑟 + sin 𝜃 𝐞𝜃) 

 

9. 電場が存在するのは S1 と S2 で囲まれた領域だけ。この領域でポインティングベクトル

は𝑺 = 𝑬 × 𝑩/𝜇0 ==
𝑄2𝜔𝑅1

2

48π2𝜀0

sin 𝜃

𝑟5
𝐞𝜑   

したがって，ポインティングベクトルは𝐞𝜑成分だけ

を持つので，xy面内で循環する。 

 


