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千葉大学大学院融合理工学府博士前期課程
一般選抜学力検査問題

(先進理化学専攻・物理学コース)

専門科目（２）

検査時間　１２０分

注意事項

1. 監督者から解答を始めるように合図があるまでは冊子を開かな
いこと。

2. 問題は全部で５ページある。
3. 問題 I, IIの両方に解答すること。
4. 問題 I, II でそれぞれ別の解答用紙を使用すること。１枚の解
答用紙に複数の問題を解答してはいけない。また，問題 I, IIの
それぞれについて１枚以上の解答用紙を提出すること。

5. 全ての解答用紙に，問題番号と受験番号を記入すること（氏名
を記入してはいけない）。

6. 別途配布する草稿用紙は回収しない。



I
体積 𝑣 の小さなセルを三次元の単純立方格子状に並べた系の熱平衡状態を考える。セルに 𝑗 =

1, 2, · · · と番号をつけ， 𝑗 番目のセルは，0または 1の値を取る変数 𝑛 𝑗 を用いてエネルギーが

𝜀 𝑗 = 𝑛 𝑗𝜀, (𝜀 > 0)

と表せる 2つの状態をとるものとする。系の微視的状態は 𝑛1, 𝑛2, · · · の値の組で指定できる。系
はマクロな大きさで，系の体積 𝑉 は 𝑉 ≫ 𝑣を満たし，セルの数 𝑉/𝑣は系の体積変化に応じて変化
するものとする。以下では逆温度を 𝛽 = 1/(𝑘𝑇) とする。𝑇 は温度，𝑘 はボルツマン定数である。
まず，セル間に相互作用がなく各セルは独立で，系のエネルギー 𝐸 が各セルのエネルギーの和

𝐸 (𝑛1, 𝑛2, · · · , 𝑛𝑉/𝑣) =
𝑉/𝑣∑
𝑗=1

𝑛 𝑗𝜀

である場合を考える。

1. 分配関数 𝑍 (𝛽,𝑉) を求めなさい。
2. Helmholtz自由エネルギー 𝐹 (𝛽,𝑉) と圧力 𝑃(𝛽,𝑉) を求めなさい。
3. カノニカル分布に対するエネルギーの期待値 ⟨𝐸⟩C

𝑇 を求めなさい。
4. 熱容量

𝐶 (𝑇,𝑉) =
𝜕⟨𝐸⟩C

𝑇

𝜕𝑇

を求めなさい。また，低温の極限（𝑘𝑇 ≪ 𝜀）での漸近的なふるまいを調べなさい。
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次に，最近接のセル間だけに相互作用があり，系のエネルギーが

𝐸 (𝑛1, 𝑛2, · · · , 𝑛𝑉/𝑣) =
𝑉/𝑣∑
𝑗=1

𝑛 𝑗𝜀 − 𝐽
∑
⟨𝑖, 𝑗 ⟩

𝑛𝑖𝑛 𝑗 , 𝐽 > 0

である場合を考える。⟨𝑖, 𝑗⟩ は最近接のセルの組についての和を表す。

この系の熱平衡状態は，逆温度 𝛽 と二つの示量変数 𝑉 と 𝑁 ≡
𝑉/𝑣∑
𝑗=1

𝑛 𝑗 を用いて一意に指定でき

る。以下では，𝑁 をある種の粒子数とみなし，これに共役な示強変数として化学ポテンシャル 𝜇

を導入してグランドカノニカル分布を適用しよう。一般に，大分配関数 Ξ(𝛽,𝑉, 𝜇) は，粒子数 𝑁

のときのエネルギー固有状態に 𝑘 = 1, 2, · · · と番号をつけ，その固有値を 𝐸𝑁,𝑘 と表したとき，

Ξ(𝛽,𝑉, 𝜇) =
∑
(𝑁,𝑘 )

𝑒−𝛽 (𝐸𝑁,𝑘−𝑁𝜇)

と定義される。また，グランドポテンシャル J (𝛽,𝑉, 𝜇) とは

J (𝛽,𝑉, 𝜇) = − 1
𝛽

lnΞ(𝛽,𝑉, 𝜇)

という関係で結ばれる。
ここで，あるセルに着目したときにそれと相互作用するセルの 𝑛𝑖 をある平均値 ⟨𝑛⟩ でおきかえ

て，系のエネルギーを

𝐸 (𝑛1, 𝑛2, · · · , 𝑛𝑉/𝑣) ≈
𝑉/𝑣∑
𝑗=1

𝑛 𝑗𝜀 − 𝐽
∑
⟨𝑖, 𝑗 ⟩

[
⟨𝑛⟩2 + ⟨𝑛⟩(𝑛𝑖 − ⟨𝑛⟩) + ⟨𝑛⟩(𝑛 𝑗 − ⟨𝑛⟩)

]
=
𝑉

𝑣

𝑧𝐽

2
⟨𝑛⟩2 +

𝑉/𝑣∑
𝑗=1

𝑛 𝑗 (𝜀 − 𝑧𝐽⟨𝑛⟩) (1)

と平均場近似する。𝑧 は最近接のセルの数（= 6）である。

5. このエネルギー (1)を用い，⟨𝑛⟩ を 𝛽,𝑉, 𝜇 とは独立なパラメータと形式的にみなして，大
分配関数 Ξ(𝛽,𝑉, 𝜇) を求めなさい。

6. グランドカノニカル分布に対する 𝑁 の期待値 ⟨𝑁⟩GC
𝛽,𝜇 と，系の圧力 𝑃(𝛽,𝑉, 𝜇) を求めな

さい。
7. 平均値 ⟨𝑛⟩ を熱平衡状態に対する期待値と等しいとして，⟨𝑛⟩ = ⟨𝑁⟩GC

𝛽,𝜇𝑣/𝑉 とおき，⟨𝑛⟩
に関する自己無撞着方程式を導きなさい。また，これを用いると系の圧力を ⟨𝑛⟩ の関数と
して

𝑃(𝛽,𝑉, ⟨𝑛⟩) = 𝑧𝐽

𝑣

(
−⟨𝑛⟩2

2
+ 1

𝛽𝑧𝐽
ln

1
1 − ⟨𝑛⟩

)
と表せることを示しなさい。

8. 前問 7.の圧力 𝑃(𝛽,𝑉, ⟨𝑛⟩) では，臨界温度 𝑇c より低い温度では，⟨𝑛⟩ が大きくなると圧力
𝑃(𝛽,𝑉, ⟨𝑛⟩) が減少する領域が現れる。この 𝑇c を求めなさい。
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II
A.
次のような質量 𝑚 の粒子に対するシュレーディンガー方程式を考える：

𝑖ℏ
𝜕

𝜕𝑡
Ψ(𝑥, 𝑡) =

(
− ℏ2

2𝑚
𝜕2

𝜕𝑥2 +𝑉 (𝑥)
)
Ψ(𝑥, 𝑡)

ただしポテンシャルの形は

𝑉 (𝑥) =
{

0 (𝑥 ≥ 𝑎, 𝑥 ≤ −𝑎)
−𝑉0 (−𝑎 < 𝑥 < 𝑎)

で与えられ，𝑉0, 𝑎 は正の定数である。

1. 定常状態の波動関数は，エネルギー 𝐸 を用いて Ψ(𝑥, 𝑡) = 𝜓(𝑥)𝑒−𝑖𝐸𝑡/ℏ と書ける。𝜓(𝑥) の
満たす方程式を求めよ。

2. 波動関数 𝜓(𝑥) が 𝑉 (𝑥) の不連続点で満たすべき境界条件を書け。また，束縛状態が存在す
るとき，無限遠方で満たすべき境界条件を書け。

エネルギー 𝐸 をもつ束縛状態が存在すると仮定して以下の問いに答えよ。

3. 領域 −𝑎 < 𝑥 < 𝑎 における束縛状態の解を 𝜓(𝑥) = 𝐶 sin 𝑘𝑥 + 𝐷 cos 𝑘𝑥 と仮定する (𝑘 , 𝐶, 𝐷
は定数)。このときエネルギー 𝐸 を決定する方程式は tan 𝑘𝑎 = 𝑋 の形で書くことができ
る。𝜓(𝑥) が偶関数および奇関数それぞれの場合について，𝑋 を 𝑉0, 𝐸 を用いて表せ。

4. 束縛状態が２つだけ存在するための条件を，𝑉0, ℏ, 𝑎, 𝑚 を用いて答えよ。

B.
続いて，３次元クーロンポテンシャル中の電子の定常状態シュレーディンガー方程式を考える：

𝐻𝜓(𝒓) = 𝐸𝜓(𝒓)

𝐻 =
𝒑2

2𝑚
− 𝑒2

4𝜋𝜖0𝑟

ここで 𝒑 = −𝑖ℏ∇ は運動量演算子，𝑟 =
√
𝒓2 =

√
𝑥2 + 𝑦2 + 𝑧2，𝑒 は素電荷，𝜖0 は真空の誘電率で

ある。

5. 角運動量演算子は 𝑳 = 𝒓 × 𝒑 によって与えられる。その 𝑧 成分 𝐿𝑧 とハミルトニアン 𝐻 と
の交換関係を答えよ。
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簡単のため，以下では主量子数 𝑛 = 2の状態空間だけを考えることにする。このとき状態は４重
に縮退し，規格直交化された波動関数は

𝜓0(𝒓) =
1√

32𝜋𝑎3
0

(
2 − 𝑟

𝑎0

)
𝑒−𝑟/2𝑎0 , 𝜓1(𝒓) =

1√
32𝜋𝑎5

0

𝑥 𝑒−𝑟/2𝑎0 ,

𝜓2(𝒓) =
1√

32𝜋𝑎5
0

𝑦 𝑒−𝑟/2𝑎0 , 𝜓3(𝒓) =
1√

32𝜋𝑎5
0

𝑧 𝑒−𝑟/2𝑎0

によって与えられる。𝑎0 = 4𝜋𝜖0ℏ2/𝑚𝑒2 はボーア半径である。必要ならば次の積分公式∫ ∞

0
𝑟𝑘 𝑒−𝑟/𝑎0𝑑𝑟 = 𝑘! 𝑎𝑘+1

0

を用いてよい (𝑘 = 0, 1, 2, · · · )。

6. エネルギー固有値を求めよ。必要ならば極座標表示におけるラプラシアンの公式 ∇2 =
1
𝑟2

𝜕

𝜕𝑟

(
𝑟2 𝜕

𝜕𝑟

)
+ 1
𝑟2 sin 𝜃

𝜕

𝜕𝜃

(
sin 𝜃

𝜕

𝜕𝜃

)
+ 1
𝑟2 sin2 𝜃

𝜕2

𝜕𝜑2 を用いてもよい。

7. 𝜓0と 𝜓3は 𝐿𝑧 の固有状態になっている。それぞれの状態に対して 𝐿𝑧 の固有値を求めよ。

8. 𝜓1 と 𝜓2 は 𝐿𝑧 の固有状態になっていない。両者の重ね合わせによって 𝐿𝑧 の規格直交化
された固有関数と固有値をすべて求めよ。

9. 一定電場を 𝑧 方向にかけると，ハミルトニアン 𝐻 に 𝐻′ = 𝑒𝐸0𝑧 という項が加わる。𝐸0 は
電場の強さを表す。縮退があるときの摂動論の考え方に従い，𝐻′ による１次のエネルギー
シフトおよび規格直交化された固有関数をすべて求めよ。
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上記４つの状態 (𝜓0,1,2,3)に対して，さらにスピン自由度も考える。スピンの波動関数は２つの状
態 𝜒±（２成分スピノル）によって記述され，規格直交化されているとする。スピン角運動量演算
子 𝑺はこの状態に対して

𝑆𝑥𝜒± =
ℏ
2
𝜒∓

𝑆𝑦𝜒± = ± 𝑖ℏ
2
𝜒∓

𝑆𝑧𝜒± = ±ℏ
2
𝜒±

のように作用する（複号同順）。

10. 上記の関係を用いて，𝑆𝑥 と 𝑆𝑦 の交換関係を求めよ。

11. 一定磁場を 𝑧方向にかけると，ハミルトニアンには 𝐻′′ = 𝜇B𝐵0(𝐿𝑧 + 2𝑆𝑧)/ℏという項が加
わる。ここで 𝐵0は磁束密度の大きさ，𝜇Bはボーア磁子である。全ハミルトニアン 𝐻+𝐻′′

に対して，𝐻′′ による１次のエネルギーシフトおよび規格直交化された固有関数をすべて
求めよ。
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