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千葉大学大学院融合理工学府博士前期課程
一般選抜学力検査問題

(先進理化学専攻・物理学コース)

専門科目（１）

検査時間　１２０分

注意事項

1. 監督者から解答を始めるように合図があるまでは冊子を開かな
いこと。

2. 問題は全部で５ページある。
3. 問題 I, IIの両方に解答すること。
4. 問題 I, II でそれぞれ別の解答用紙を使用すること。１枚の解
答用紙に複数の問題を解答してはいけない。また，問題 I, IIの
それぞれについて１枚以上の解答用紙を提出すること。

5. 全ての解答用紙に，問題番号と受験番号を記入すること（氏名
を記入してはいけない）。

6. 別途配布する草稿用紙は回収しない。



I
ビルなどの構造物は，地震に対して多自由度の連成振動系として振る舞う。簡略化したモデル

によりビルの固有振動を考える。
図に示すように，左の 3階建てのビルを右のように簡略化して考える。地面を基準とした各階

の水平方向の変位をそれぞれ 𝑥1, 𝑥2, 𝑥3 とし，静止状態で 𝑥1 = 𝑥2 = 𝑥3 = 0である。添え字の 1,2,3
はそれぞれ１階，2階，3階を表す。各階の質量はすべて 𝑚 とする。各階の間には柱があり，水
平方向の変位に応じて復元力を与える。それらの水平方向のばね定数を 𝑘0,1, 𝑘1,2, 𝑘2,3 とし，１
階の剛性を高めた構造を採用したため，𝑘0,1 = 2𝑘 , 𝑘1,2 = 𝑘2,3 = 𝑘 である (𝑘 > 0)。添字の 2つの
数字は階を表し，𝑘0,1 は 0階（地面）と 1階との間のばね定数であることを示す。𝑖 = 1, 2, 3とし
て，𝑖 − 1階と 𝑖 階との間の柱には変位に応じて弾性エネルギー 𝑉𝑖−1,𝑖 ,

𝑉𝑖−1,𝑖 =
1
2
𝑘𝑖−1,𝑖 (𝑥𝑖 − 𝑥𝑖−1)2 ,

が蓄えられる。ただし，𝑥0 = 0とする。また，垂直方向の変位と運動は無視して良い。
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簡略化されたモデル

𝑥

必要であれば次の情報を使ってもよい。
√

2 ≈ 1.41,
√

3 ≈ 1.73,
√

5 ≈ 2.24,
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以下の問いに答えなさい。

1. この系のラグランジアン 𝐿 を 𝑚, 𝑘 , 𝑥1, 𝑥2, 𝑥3 を用いて求めよ。

2. 𝑥1, 𝑥2, 𝑥3 に関する運動方程式をそれぞれ 𝑚, 𝑘 , 𝑥1, 𝑥2, 𝑥3 を用いて表せ。

3. 水平方向の変位をベクトル 𝑿 =
©­­­«
𝑥1

𝑥2

𝑥3

ª®®®¬として表した場合，運動方程式を以下のように行列表
示することができる。

••
𝑿 + 𝑲𝑿 = 0

この定数行列 𝑲 を求めよ。
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4. 定数ベクトル 𝑨を用いて固有解を 𝑿 (𝑡) = 𝑨𝑒𝑖𝜔𝑡 と表し，固有角振動数 𝜔を求める。
a) 𝜔 =

√
𝑘
𝑚𝜆と置き，𝜆に関する方程式を導け。

b) a)で求めた方程式を解き，固有角振動数を求め，𝑘 と 𝑚 で表せ。なお，𝜆 は少なくとも 1
つの整数解を持つ。

以下では，各階の質量を 𝑚 = 5.0 × 104 kgとし，実際に数値を当てはめて考える。

5. 𝑘 = 1.0 × 107 N/mとしたときの最も小さい固有振動数 𝑓 (Hz)を有効数字 2桁で求めよ。

6. 地震による水平揺れは 1∼3 Hzが最も大きく，耐震設計をする際は固有振動数をこの範囲外
にする。柱１本あたり水平方向ばね定数が 1.0 × 107 N/m のとき，ビルの固有振動数を 3.0
Hz以上にする 𝑘 を得るには何本の柱が必要となるだろうか？ 1, 2, 3階の柱の本数をそれぞ
れ 2𝑛, 𝑛, 𝑛 本として，この 𝑛 を求めよ。ただし，𝑘 は 𝑛 に比例するとし，𝑛 の変化による各
階の質量の増減はないとする。
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II
図 1のように原点を中心とする厚みが無視できる二つの球殻が真空中に置かれている。内側の

球殻を S1，外側の球殻を S2 とよぶ。それぞれの半径は 𝑅1，𝑅2 であり，総電荷量 +𝑄 および −𝑄
で一様に帯電している。ただし，𝑅1 < 𝑅2，𝑄 > 0である。真空の誘電率および透磁率を 𝜀0 およ
び 𝜇0 とする．以下の問いに答えよ。必要なら，極座標における以下のベクトル解析の公式を用
いてよい。

∇ 𝑓 =
𝜕 𝑓

𝜕𝑟
e𝑟 +

1
𝑟

𝜕 𝑓

𝜕𝜃
e𝜃 +

1
𝑟 sin 𝜃

𝜕 𝑓

𝜕𝜑
e𝜑 ,

∇ · 𝑿 =
1
𝑟2

𝜕

𝜕𝑟
(𝑟2𝑋𝑟 ) +

1
𝑟 sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃𝑋𝜃 ) +

1
𝑟 sin 𝜃

𝜕

𝜕𝜑
𝑋𝜑 ,

∇ × 𝑿 =
1

𝑟2 sin 𝜃

{
𝜕

𝜕𝜃
(𝑟 sin 𝜃𝑋𝜑) −

𝜕

𝜕𝜑
(𝑟𝑋𝜑)

}
e𝑟 +

1
𝑟 sin 𝜃

{
𝜕

𝜕𝜑
𝑋𝑟 −

𝜕

𝜕𝑟
(𝑟 sin 𝜃𝑋𝜑)

}
e𝜃

+ 1
𝑟

{
𝜕

𝜕𝑟
(𝑟𝑋𝜃 ) −

𝜕

𝜕𝜃
𝑋𝑟

}
e𝜑 .

1. S1 および S2 上の表面電荷密度をそれぞれ求めよ。

2. 原点からの距離を 𝑟 とする。電場の大きさおよび静電ポテンシャルを 𝑟 の関数として表
し，その概形をグラフに表せ。ただし，𝑟 → ∞での静電ポテンシャルを 0とする。

3. S1 および S2 で囲まれた領域での電場のエネルギーの総和を求めよ。
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次に，内側の球殻 S1 だけを 𝑧軸周りに角速度 𝜔で（方位角 𝜑が増加する方向に）回転させた。
このとき S1 上に固定された電荷も同じ角速度で回転するので，S1 上に電流が生じ，周囲に磁場
が発生する。球殻 S2 は静止しており，磁場に何の影響も及ぼさないと考えてよい。以下では S1

上の位置を極座標で表すこととし，図 2のように 𝑧 軸とのなす角を 𝜃 とする。

4. 図 3 に示すよう，S1 上の角度 𝜃，幅 𝑑𝜃 のリング状の領域を考える。𝑑𝜃 が十分小さいと
き，このリングに流れる電流を求めよ。また，ビオ-サバールの法則を用いて，原点に生じ
る磁束密度を求めよ。

5. 上の結果を使って，S1 上の全ての電流が原点に作る磁束密度を求めよ。

S1 内部および外部の任意の位置 𝒓 における磁束密度 𝑩(𝒓) を求めよう。S1 上を除けば，
∇ × 𝑩(𝒓) = 0が成り立つので 𝑩(𝒓) = ∇𝛷B を満たすスカラーポテンシャル𝛷B を定義することが
できる。𝛷B は 𝑧 軸周りに軸対称なので，ルジャンドル多項式 𝑃𝑛 (cos 𝜃) を用いて，

𝛷B(𝑟 < 𝑅1) =
∞∑
𝑛=1

𝛼𝑛
𝑟𝑛

𝑅𝑛
1
𝑃𝑛 (cos 𝜃)

𝛷B(𝑟 > 𝑅1) =
∞∑
𝑛=1

𝛽𝑛
𝑅𝑛+1

1
𝑟𝑛+1 𝑃𝑛 (cos 𝜃)

と展開することができる。ここで，𝑟 = |𝒓 | である。ルジャンドル多項式は 𝑃𝑛 (𝑥) =
1

2𝑛𝑛!
𝑑𝑛

𝑑𝑥𝑛

{
(𝑥2 − 1)𝑛

}
で与えられ，∫ 1

−1
𝑃𝑚(𝑥)𝑃𝑛 (𝑥)𝑑𝑥 =

2
2𝑛 + 1

𝛿𝑛𝑚

を満たす（直交性）。最初の二つの多項式は

𝑃1(𝑥) = 𝑥, 𝑃2(𝑥) =
1
2
(3𝑥2 − 1)

である。
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6. ∇ · 𝑩(𝒓) = 0から磁束密度の動径方向成分 𝐵𝑟 は 𝑟 = 𝑅1 で連続になる。このことを用いて
𝛼𝑛 と 𝛽𝑛 の関係を導け。

7. 次にアンペールの法則を用いると，磁束密度の天頂角成分 𝐵𝜃 は 𝑟 = 𝑅1 で不連続になり，
表面電流密度で決まるとびが生じる。このことを用いて 𝛼𝑛 と 𝛽𝑛 を決定せよ。

8. S1 内部および外部の磁束密度 𝑩(𝒓) を求めよ。

9. 2. で求めた電場と 8. で求めた磁束密度からポインティングベクトル 𝑺(𝒓) を求めよ。ま
た，𝑧 = 0の 𝑥𝑦面内でのポインティングベクトルの概形を図を描いて説明せよ。
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