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千葉大学大学院融合理工学府　博士前期課程

学力検査問題
（数学情報科学専攻　数学・情報数理学コース）

専 門

令和７年８月７日（木）
検査時間　２４０分

「注意事項」

1. 問題はA0問題が１題，A問題が５題，B問題が１２題ある．

A0は全員が解答すること．
A問題: A1,...,A5 の中から 任意に３題選んで 解答すること．
（４題以上解答することは認められない．）
B問題: B1,...,B12 の中から 任意に１題選んで 解答すること．
（２題以上解答することは認められない．）

2. 解答用紙は５枚あるので，そのすべてにコース名と受験番号を記入のこと．

3. 各解答用紙には，解答しようとする問題番号を明記し，
１枚に１題だけを解答すること．
解答不能の場合も，解答用紙を持ち帰ってはならない．

4. 解答用紙が不足のときには，用紙の裏面も使用してよい．

5. 問題冊子は持ち帰ってもよい．





A0 写像の列 X
f−→ Y

g−→ Z
h−→ X がある. 合成を c = h ◦ g ◦ f , d = f ◦ h ◦ g,

e = g ◦ f ◦ h とおく.

(1) c = idX (恒等写像) ならば, f は単射であり hは全射であることを示せ.

(2) c = idX , d = idY , e = idZ ならば, f, g, hは全て全単射であることを示せ.

(3) c = idX かつ gは単射でも全射でもないようなX,Y, Z, f, g, hの例を挙げよ.

(4) I =
⋂∞

n=1 c
n(X), J =

⋂∞
n=1 d

n(Y ) とおくとき, f(I) ⊆ J となることを証明せよ (cn,

dn はそれぞれ c, dの n個の合成).

(5) f が単射ならば (4)の I, J に対し f(I) = J となることを証明せよ.

A1 3次実正方行列全体の集合 M3(R) は, 行列の和とスカラー倍によって 9次元実ベ
クトル空間になる. I3 ∈M3(R) を単位行列とする. 行列X ∈M3(R) に対し,

SX := {B ∈M3(R) | (B +X)(B2 − BX +X2) = B3 +X3}
TX := {B ∈M3(R) | BX = XB}

と定める. 以下に答えよ.

(1) 行列

A =

 −5 2 3

−4 0 2

−10 4 6


のジョルダン標準形 J を求めよ.

(2) TJ の元を全て求めよ.

(3) TAの次元を求めよ.

(4) 集合ΣX を

ΣX := {V | I3 ∈ V ⊆ SX , V はM3(R) の部分ベクトル空間 }

により定める. TX ∈ ΣX であることを示せ.

(5) 行列 X ∈M3(R) に対し, TX は, ΣX の包含関係に関する最大元であることを示せ.
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A2 以下の問いに答えよ．

(1) f : (−1, 1) → Rは (−1, 1)において連続かつ (−1, 0) ∪ (0, 1)において微分可能である
とする．さらに, lim

x→0
f ′(x)が存在するとする．このとき, f は x = 0で微分可能であ

り, f ′(0) = lim
x→0

f ′(x)となることを示せ．

(2) g : R → RはRで微分可能であり, a, bは a < bを満たす実数であるとする．ただし,

g′が連続であるとは仮定しない．このとき, g′(a) < 0 < g′(b)ならば, ある c ∈ (a, b)

が存在して g′(c) = 0となることを示せ．

(3) h : R → RはRで微分可能であり, a, bは a < bを満たす実数であるとする．ただし, h′

が連続であるとは仮定しない．このとき, h′(a) < h′(b)ならば,任意のC ∈ (h′(a), h′(b))

に対して, ある c ∈ (a, b)が存在して h′(c) = Cとなることを示せ．

A3 S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}をR3の単位球面とする. R3には標準的
な位相Oが入っているものとし, S2にはR3の部分空間としての相対位相 (これをOS2とか
く)が入っているものとする.

S2の同値関係∼を x ∼ y ⇐⇒ x = ±yで定め, P = S2/ ∼を商集合, π : S2 → P を自然
な射影とし, P には商位相 (これをOP とかく)が入っているものとする.

(1) Xを S2の部分集合とする. X ∈ OS2となるための必要十分条件を答えよ.

(2) 位相空間 (S2,OS2)はコンパクトになることを示せ. ハイネ・ボレルの定理およびその
拡張は証明抜きに使用してよい.

(3) Y をP の部分集合とする. Y ∈ OP となるための必要十分条件をOS2を用いて答えよ.

(4) P はコンパクトであることを示せ.

A4 0 < p < 1とする．表の出る確率が p，裏の出る確率が 1− pのコインを繰り返し
投げる．初めて表が出るまでにコインを投げた回数Xの従う確率分布を，パラメーター p

の幾何分布とよぶ．

(1) Xのモーメント母関数（積率母関数）を求め，さらに期待値と分散を求めよ．

(2) 正整数m,nについて，X が P (X > m + n |X > m) = P (X > n)を満たすことを示
せ．この性質を確率分布の無記憶性とよぶ．

(3) 正整数上の確率分布で無記憶性をもつものは幾何分布のみであることを示せ．
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A5 次の Python のプログラムに関して各小問に答えよ．

def Choose(n, w):

ch = 1

for i in range(w):

ch = ch * (n-i) // (i+1)

return ch

def subConstBE(n, w, i):

if (n == 0):

BE = []

else:

if (i < Choose(n-1, w)):

BE = [0] + subConstBE(n-1, w, i)

else:

BE = [1] + subConstBE(n-1, w-1, i- Choose(n-1, w))

return BE

def ConstBE(n, w, i):

if (i < 0) or (i >= Choose(n, w)):

print("Out of range")

exit()

return subConstBE(n, w, i)

(1) Choose(n,w)の値をnとwを用いて表せ．ただしnとwは int型を持ち，n ≥ w ≥ 0

である．

(2) ConstBE(6, 3, 4)の出力を求めよ．

(3) ConstBE(n,w, i)の出力が

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1]

となる n，w，iを求めよ．
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B1 集合を X = R−Q, 群を G = PGL2(Q) := GL2(Q)/H とする. ここで,

GL2(Q) =

{(
a b

c d

) ∣∣∣ a, b, c, d ∈ Q, ad− bc 6= 0

}
,

H =

{(
k 0

0 k

) ∣∣∣ k ∈ Q, k 6= 0

}
.

自然な全射 GL2(Q) → G による
(
a b

c d

)
の像を

[
a b

c d

]
で表す.

(1) 写像 G×X → X; (g, x) 7→ g · x を,[
a b

c d

]
· x =

ax+ b

cx+ d

と定めるとき, これはwell-definedであり, GのXへの左作用となることを証明せよ.

(2) 任意の x ∈ X に対して, xのG軌道

G · x = {g · x | g ∈ G}

がXにおいて稠密であることを証明せよ. ただし, Xの位相はRのユークリッド位相
から誘導されるものとする.

(3) 元 x ∈ X に対して, 固定部分群

Gx = {g ∈ G | g · x = x}

が非自明となるための必要十分条件を求めよ.

(4) Gxは非自明ならば無限アーベル群であるということを証明せよ.
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B2 A := C[x, y, z] を複素数係数 3変数多項式環とし, イデアル I ⊆ A を

I := (x2y − z2, yz − x3, zx− y2)

により定める. Aの元 f に対し, そのA/Iでの像を f で表す.

(1) A/I において,

x4 = y3

であることを示せ.

(2) A/IはC加群として,

S := {z} ∪
{
xiyj

∣∣ i ≥ 0, j ∈ {0, 1, 2}
}

が生成することを示せ.

(3) 環準同型 ϕ : A→ C[t] を ϕ(f) = f(t3, t4, t5)により定めるとき,

I = Ker(ϕ)

を示せ.

(4) Aには通常の掛け算によってC[x]加群の構造が入る. I ⊆ A はC[x] 部分加群でもあ
るので, A/Iには自然にC[x]加群の構造が入る. C[x]加群として

A/I ∼= C[x]⊕ C[x]⊕ C[x]

であることを示せ.
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B3 M をm次元可微分多様体，(Uα, φα)と (Uβ, φβ)を座標近傍で Uα ∩ Uβ 6= ∅とな
るものとする．点 p ∈ Uα ∩ Uβ の (Uα, φα)での局所座標を (x1, . . . , xm), (Uβ, φβ)での局所
座標を (y1, . . . , ym)とする．

(1) M の点 pにおける接ベクトル空間 TpM の基底 ∂

∂x1
, . . . ,

∂

∂xm
および ∂

∂y1
, . . . ,

∂

∂ym
に

ついて， ∂

∂xj
を ∂

∂y1
, . . . ,

∂

∂ym
で表せ．

(2) 二つのm次微分形式が，点 p ∈ Uα ∩ Uβの近くで局所座標を用いて dx1 ∧ · · · ∧ dxm,
dy1 ∧ · · · ∧ dym と表されているとする．dx1 ∧ · · · ∧ dxm = f dy1 ∧ · · · ∧ dym をみたす
関数 f を求めよ．

(3) m = 2とする．局所座標の間の座標変換が (y1, y2) = (2x1 + x2,−x1 + 4x2) で与えら
れているとする．点 p ∈ Uα ∩ Uβ での接ベクトル v ∈ TpM が v = a

∂

∂x1
+ b

∂

∂x2
=

c
∂

∂y1
+ d

∂

∂y2
をみたすとき，

(
a

b

)
= C

(
c

d

)
となる行列Cを求めよ．

B4 R3の部分位相空間を

S2 := {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1},
X := {(x, y, z) ∈ S2 | z ≤ 0} ∪ {(x, 0, 0) ∈ R3 | − 1 ≤ x ≤ 1} ∪ {(0, y, 0) ∈ R3 | − 1 ≤ y ≤ 1},
Y := X ∪ {(x, y, z) ∈ S2 | z ≥ 0}

と定める．

(1) Xの整係数ホモロジー群を求めよ．

(2) Y の整係数ホモロジー群を求めよ．
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B5 0 < r < Rなる実数に対して，複素数平面内に曲線 C1, C2, C3, C4を下のように
定める．

C1 : z(θ) = reiθ (θ ∈ [0, π/4])

C2 : z(t) = t (t ∈ [r, R])

C3 : z(θ) = Reiθ (θ ∈ [0, π/4])

C4 : z(t) = teiπ/4 (t ∈ [r, R])

(1) 次の等式を示せ．

lim
r→+0

∫
C1

exp(iz2) dz = 0, lim
R→+∞

∫
C3

exp(iz2) dz = 0.

(2) 次の極限値を求めよ．
lim
r→+0

lim
R→+∞

∫
C4

exp(iz2) dz.

(3) 次の広義積分を計算せよ． ∫ ∞

0

sin(x2) dx.

B6 実数値の未知関数 x(t) に関する次の単独 2階常微分方程式を考える.

p(t)x′′ + p′(t)x′ + q(t)x = 0.

ここで, p(t), q(t) は p(t) > 0, q(t) > 0 (t ∈ R) をみたす, それぞれ C1-級, C0-級の実数値
関数とする.

解 x に対して, x(t0) = 0 となる点 t0 のことを x の零点という. また 2点 t0, t1 (t0 < t1)

が x の隣り合う零点であるとは, t0, t1 が x の零点で, かつ開区間 (t0, t1) には x の零点が
ないことをいう.

(1) x(t) 6≡ 0 なる解 x に対して  x(t) = eρ(t) sin θ(t),

p(t)x′(t) = eρ(t) cos θ(t),

となる C1-級の実数値関数 ρ(t), θ(t) を定める. ρ′(t) および θ′(t) を p(t), q(t), ρ(t),

θ(t) の式で表せ.

(2) t0, t1 (t0 < t1) が解 x の隣り合う零点であって, ρ(t), θ(t) は (1) で定めた関数とする.

θ(t1)− θ(t0) を求めよ.

(3) p(t)q(t) ≡ 1 をみたすとする.
∫∞
−∞ q(t)dt = +∞ ならば, x(t) 6≡ 0 なる任意の解 x は

零点を無限個持つことを示せ.
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B7 可測関数 f : R → Rと λ > 0に対して,

‖f‖ :=

(∫
R
|f(x)|2 dx

)1/2

,

(Sλf)(x) := λ1/2f(λx)

と定める．また, j = 1, 2とし, fj : R → R を可測関数で ‖fj‖ <∞を満たすものとする．こ
のとき, 以下の問いに答えよ．ただし, 任意の ϵ > 0と ‖f‖ <∞を満たす可測関数 f に対し
て, あるコンパクト台をもつ連続関数 gが存在して, ‖f − g‖ < ϵを満たすことは証明せずに
用いて良い．
(1) ‖f1 + f2‖ ≤ ‖f1‖+ ‖f2‖を示せ．
(2) lim

λ→1
‖Sλf1 − f1‖ = 0を示せ．

(3) lim
λ→0

‖Sλf1 − f2‖2 = ‖f1‖2 + ‖f2‖2を示せ．

(4) lim
λ→∞

‖Sλf1 − f2‖2 = ‖f1‖2 + ‖f2‖2を示せ．

B8 (Xi)i=1,2,···を独立同分布な実数値確率変数列とする． Sn =
n∑

k=1

Xkとおく．以下

では lim
n→∞

1

n
log 0 = −∞とする．このとき，以下の問いに答えよ．

(1) 実数列 (an)n=1,2,···はam+n ≥ am+an (m,n ≥ 1)を満たすとする．このとき極限 lim
n→∞

an
n

が±∞を含めて存在し， lim
n→∞

an
n

= sup
n

an
n
であることを示せ．

(2) (1)を用いて，任意の実数 cに対して極限 lim
n→∞

1

n
logP (Sn ≥ cn)が±∞を含めて存在

することを示せ．
つぎに以下の命題に関して，問 (3)，(4)に答えよ．

命題：上のX1に対してさらに，任意の t ∈ Rに対してE[etX1 ] < ∞と仮定する．このとき
a > E[X1]ならば

lim
n→∞

1

n
logP (Sn ≥ an) = −I(a)

が成り立つ．ただし I(a) = sup
t∈R

(
at− logE[etX1 ]

)である．
(3) P (X1 > 0) = 0かつ a = 0のとき上の命題を示せ．
(4) X1が平均がµ，分散が vの正規分布に従う確率変数であるとき，I(a)を supを含まな
い形で求めよ．
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B9 目的変数yを，p個の説明変数x1, . . . , xpの線形和 b0+
∑p

j=1 bjxjで説明する重回帰
分析を考える．データはn個の対象からなる．ただしn > p+1とする．対応するn次元ベクト
ルをy,x1, . . . ,xp ∈ Rnとし，また全ての成分が 1であるn次元ベクトルをx0 ∈ Rnとする．
x0,x1, . . . ,xpの一次独立性を仮定する．回帰係数ベクトルを b = (b0, b1, . . . , bp)

T ∈ Rp+1，
n× (p+ 1)説明変数行列をX = (x0 x1 . . . xp)として，以下の (1)–(5)に答えなさい．
(1) ‖y −Xb‖2を最小化する最小二乗解は b̂ = (XTX)−1XTy であることを示しなさい．
(2) 予測値ベクトル ŷは，b̂を用いて ŷ = Xb̂ = X(XTX)−1XTy と定義される．n× n

正方行列
Q = X(XTX)−1XT (⋆)

の性質について，(i) trQ = p+ 1, (ii) Qx1 = x1を示しなさい．
(3) 統計モデルy = Xb+ϵ（ただし，ϵは確率的に振る舞う誤差項で，E[ϵ] = 0, Var(ϵ) =

σ2Inを満たす）からyが観測されたとする．最小二乗解 b̂が bの不偏推定量であるこ
とを示しなさい．

重要な説明変数の組を適切に選ぶことは実データ解析において重要である．今，x1, . . . , xp−1

の重要性は経験的に認知されている一方，xpの重要性は不明であるとする．このとき，xp
を含まないモデルM1と含んだモデルM2の比較を交差検証法で行いたい．交差検証法は
各モデルの平均二乗誤差（Mean Squared Error: MSE）の比較で行われる．M2の平均二
乗誤差MSE2は以下のように導出される．i番目のデータを抜いた時の最小二乗解を b̂−iと
する．i番目の説明変数ベクトル x̃T

i = (1, xi1, . . . , xip) に関する線形和 x̃T
i b̂−iを用いて yiを

予測する場合の二乗誤差は (yi − x̃T
i b̂−i)

2である．従って，i = 1, . . . , nに対する平均二乗誤
差は

MSE2 =
1

n

n∑
i=1

(yi − x̃T

i b̂−i)
2 (4)

である．M1に対しても平均二乗誤差が同様に得られる．最終的に，平均二乗誤差がより
小さいモデルを選ぶことになる．
(4) Qii < 1のとき (4)の x̃T

i b̂−iは，

x̃T

i b̂−i =
ŷi −Qiiyi
1−Qii

ただし
{
ŷi : (2)の ŷの第 i成分
Qii : (⋆)で定義されるQの (i, i)成分

(♦)

と書けることを示しなさい．
(5) (♦)を用いると，(4)で与えられるM2の平均二乗誤差は，

MSE2 =
1

n

n∑
i=1

(
yi − ŷi
1−Qii

)2

(♣)

と書けることを示しなさい．また (♣)の表現を使って平均二乗誤差を計算することの
利点を説明しなさい．
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B10 複素数体C上の 2次元ベクトル空間C2の基底を |0〉 :=

(
1

0

)
，|1〉 :=

(
0

1

)
で

定める．そして，長さ nのビット列 c := (c1, c2, . . . , cn)，ci ∈ {0, 1}，1 ≤ i ≤ n，に対して
C2の n次テンソル空間 (C2)⊗nの元 |c〉を |c〉 := |c1〉 ⊗ |c2〉 ⊗ · · · ⊗ |cn〉 と定める．以下の問
いに答えよ．

(1) |ϕ1〉 :=
|00〉+ |11〉√

2
，|ϕ2〉 :=

|00〉 − |11〉√
2

，|ϕ3〉 :=
|01〉+ |10〉√

2
，|ϕ4〉 :=

|01〉 − |10〉√
2

，と
それぞれおくとき，|ϕ1〉，|ϕ2〉，|ϕ3〉，|ϕ4〉が (C2)⊗2のC上基底であることを示しな
さい．

(2) 0でない α, β ∈ Cに対して，|ψ(α,β)
1 〉, |ψ(α,β)

2 〉, |ψ(α,β)
3 〉, |ψ(α,β)

4 〉 ∈ C2 を次で定める．

(α|0〉+ β|1〉)⊗ |ϕ1〉 = |ϕ1〉 ⊗ |ψ(α,β)
1 〉+ |ϕ2〉 ⊗ |ψ(α,β)

2 〉+ |ϕ3〉 ⊗ |ψ(α,β)
3 〉+ |ϕ4〉 ⊗ |ψ(α,β)

4 〉

このとき，任意の α, β ∈ Cに対して，次を満たすユニタリ行列U2，U3，U4をそれぞ
れ求めよ．

U2|ψ(α,β)
2 〉 = |ψ(α,β)

1 〉, U3|ψ(α,β)
3 〉 = |ψ(α,β)

1 〉, U4|ψ(α,β)
4 〉 = |ψ(α,β)

1 〉

(3) V := {|ϕ1〉, |ϕ2〉, |ϕ3〉, |ϕ4〉}，E := {(|ϕi〉, |ϕj〉) ∈ V × V | |ϕi〉 = U2 ⊗ U3|ϕj〉} と定め
たグラフG := (V,E)を図示せよ．

B11 Σ = {a, b, c}をアルファベットとする．語w ∈ Σ∗と自然数 nに対して，wnで
wを n回繰り返して得られる語を表す．以下の問いに答えよ．ただし次の補題は自由に用
いてよい．

反復補題 文脈自由言語 Lに対して，ある定数N が存在して，長さがN より長い任意の
語w ∈ Lに対して，w = xyzuvという分解が存在して次を満足する．(i) yuは空ではない．
(ii) 任意の自然数 nに対して xynzunv ∈ L．

(1) L1 = {anbncn | n ∈ N}が文脈自由言語でないことを示せ．

(2) 文脈自由言語 L,L′ ⊆ Σ∗について，その共通部分 L ∩ L′は必ずしも文脈自由ではな
いことを示せ．

(3) 1文字だけから成るアルファベット Σ1 = {a}を考える．文脈自由言語 L,L′ ⊆ Σ∗
1に

ついて，その共通部分 L ∩ L′は文脈自由か．理由も述べよ．
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B12 次のようにOCamlの関数を定義する．

let rec fold_right f s e =

match s with

[] -> e

| x :: xs -> f x (fold_right f xs e)

let map_app f s1 s2 = fold_right (fun x ms -> f x :: ms) s1 s2

let app s1 s2 = map_app (fun x -> x) s1 s2

let rev s = fold_right (fun x rs -> app rs [x]) s []

let rec ksss k s =

if k = 0 then [[]]

else match s with

[] -> []

| x :: xs ->

map_app (fun s -> x :: s) (ksss (k - 1) xs) (ksss k xs)

(1) 長さ nのリスト sに対し，rev sを評価したときのコンス (::)の総呼び出し回数を n

を用いて表せ．

(2) ksss 2 [0; 1; 2]の評価結果を記せ．

(3) 非負整数 kおよび長さ nのリスト sに対し，ksss k sを評価したときのコンスの総
呼び出し回数をK(k, n)と書くことにする．非負整数 k, nに対し，K(k + 1, n+ 1)−
K(k + 1, n)−K(k, n)の値を k, nを用いて表せ．

(4) 次の性質をすべて満たすOCamlの関数 rksssaを定義せよ．

• 任意の非負整数 k と整数リスト s1, s2，および整数リストのリスト σ に対し，
rksssa k s1 s2 σの評価結果と map_app (fun s -> app (rev s) s2) (ksss k

s1) σ の評価結果が (OCamlの = による比較の意味で)等しい．
• 非負整数 kと整数リスト s1, s2，および整数リストのリスト σに対し，rksssa k

s1 s2 σ を評価したときのコンスの総呼び出し回数を s1の長さnを用いてR(k, n)

と書けて，任意の非負整数k, nに対し，R(k+1, n+1)−R(k+1, n)−R(k, n) = 1

が成り立つ．
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