

情報科学コース解答例

Sample Solutions The Department of Applied and Cognitive Informatics

1

記載されている解答例は、あくまで一例です。

日本語版

	(1)	$aaa, aab, aba, baa, abb, bab, bba, bbb$
	(2)	<p>$f^k: S_n \rightarrow S_n (0 \leq k \leq n)$ を、 S_n 上の k 回の巡回シフトとする。</p> <p><u>反射律</u>：任意の $s_1 \in S_n$ に対して、 $f^0(s_1) = s_1$ なので、 $s_1 \sim s_1$。</p> <p><u>対称律</u>：$s_1, s_2 \in S_n$ に対して、 $s_1 \sim s_2$ とする。このとき、関係 “~” の定義より、 $f^k(s_1) = s_2$ となる非負の整数 $0 \leq k \leq n$ が存在する。任意の $s_1 \in S_n$ に対して、 $f^n(s_1) = s_1$ に注意すると、次が成り立つ。</p> $f^{n-k}(s_2) = f^{n-k}(f^k(s_1)) = f^n(s_1) = s_1.$ <p>よって、 $s_2 \sim s_1$。</p> <p><u>推移律</u>：$s_1, s_2, s_3 \in S_n$ に対して、 $s_1 \sim s_2$ かつ $s_2 \sim s_3$ とする。このとき、 $f^k(s_1) = s_2$ と $f^l(s_2) = s_3$ を満たす非負の整数 $k, l (0 \leq k, l \leq n)$ が存在するので、次が成り立つ。</p> $f^{k+l}(s_1) = f^l(f^k(s_1)) = f^l(s_2) = s_3.$ <p>よって、 $s_1 \sim s_3$.</p>
	(3)	$\{aaa\}, \{bbb\}, \{aab, aba, baa\}, \{abb, bab, bba\}$
問 1	(4)	<p>$n = 1$ のとき、 $S_1 = \{a, b\}$。同値類は $\{a\}, \{b\}$ の 2 個。よって、 $N(1) = 2$。</p> <p>$n = 2$ のとき、 $S_2 = \{aa, ab, ba, bb\}$。同値類は $\{aa\}, \{bb\}, \{ab, ba\}$ の 3 個。よって、 $N(2) = 3$。</p> <p>$n = 3$ のとき、 S_3 の要素は (1) の 8 個。同値類は (3) の 4 個。よって、 $N(3) = 4$。</p> <p>$n = 4$ のとき、 S_4 の要素数は $2^4 = 16$ 個。同値類は 6 個。よって、 $N(4) = 6$。</p>
	(5)	<p>S_n 上の同値関係 “~” による同値類を $A_1, \dots, A_{N(n)}$ で表す。ここで、 $N(n)$ は、(4) で定義された同値類の数である。長さ n の文字列は 2^n 個あるので、 S_n の要素数は 2^n である。 S_n から 1 つの文字列 s を一様分布にしたがって取り出す時、文字列 s が、必ずある同値類 A_i に属し、その確率 P_i は、</p> $P_i = \frac{ A_i }{2^n}$ <p>である。ここで、 A_i は、同値類 A_i の要素数を表す。 S_n の任意の文字列 s に対して、 n 回の巡回シフトで必ずもとの文字列 s に一致するので、 $A_i \leq n$ である。確率 P_i の総和が 1 であることから、 $N(n)$ について、次の不等式が成り立つ。</p> $1 = \sum_{i=1}^{N(n)} P_i = \sum_{i=1}^{N(n)} \frac{ A_i }{2^n} \leq \sum_{i=1}^{N(n)} \frac{n}{2^n} = \frac{nN(n)}{2^n}$ <p>これより、 $N(n) \geq \frac{2^n}{n}$ と変形でき、証明された。</p>

1

The sample solution provided here is for reference only.

English version

問 1	(1)	$aaa, aab, aba, baa, abb, bab, bba, bbb$
	(2)	<p>Let $f: S_n \rightarrow S_n$ be the circular shift operator over S_n.</p> <p><u>reflexivity</u> : Applying a circular shift 0 times to any $s_1 \in S_n$ gives s_1 itself, implying $s_1 \sim s_1$.</p> <p><u>symmetry</u> : Suppose $s_1 \sim s_2$, where $s_1, s_2 \in S_n$. By definition, there exists a non-negative integer $k \leq n$ such that $f^k(s_1) = s_2$. Since f^n is an identity map, we have</p> $f^{n-k}(s_2) = f^{n-k}(f^k(s_1)) = f^n(s_1) = s_1.$ <p><u>transitivity</u> : Take $s_1, s_2, s_3 \in S_n$ such that $f^k(s_1) = s_2$ and $f^l(s_2) = s_3$ for some non-negative integers k and l. We have</p> $f^{k+l}(s_1) = f^l(f^k(s_1)) = f^l(s_2) = s_3.$
	(3)	$\{aaa\}, \{bbb\}, \{aab, aba, baa\}, \{abb, bab, bba\}$
	(4)	<p>For $n = 1$, we have $S_1 = \{a, b\}$. The equivalence classes are $\{a\}$ and $\{b\}$, so $N(1) = 2$. If $n = 2$, the set $S_2 = \{aa, ab, ba, bb\}$ is partitioned into the three equivalence classes $\{aa\}$, $\{bb\}$, and $\{ab, ba\}$, which means $N(2) = 3$. As S_3 and the corresponding equivalence classes are given in (1) and (3) respectively, we have $N(3) = 4$. For the remaining case where $n = 4$, we have $2^4 = 16$ strings in S_4. A straightforward enumeration shows $N(4) = 6$.</p>
	(5)	<p>Let $A_1, \dots, A_{N(n)}$ be the equivalence classes which are induced by \sim and partition S_n. Take $s \in S_n$ uniformly at random. Because $S_n = 2^n$, the probability P_i that $s \in A_i$ for $i = 1, \dots, N(n)$ is</p> $P_i = \frac{ A_i }{2^n}.$ <p>Since applying a circular shift n times is an identity transformation, we have $A_i \leq n$. Hence, because the events $s \in A_i$, $i = 1, \dots, N(n)$, are disjoint while one of them must occur, we have</p> $1 = \sum_{i=1}^{N(n)} P_i = \sum_{i=1}^{N(n)} \frac{ A_i }{2^n} \leq \sum_{i=1}^{N(n)} \frac{n}{2^n} = \frac{nN(n)}{2^n}.$ <p>Rearranging the above gives $N(n) \geq \frac{2^n}{n}$, as desired.</p>

1

記載されている解答例は、あくまで一例です。

日本語版

	(1)	彩色は独立かつ均等確率であるので、 S_i の 4 つの要素が全て赤となる確率は 2^{-4} 、つまり $1/16$ である。また S_i が単色となるのは、4 つの要素全てが赤あるいは全てが青となるときであるので、その生起確率はそれぞれの事象の生起確率の和である $1/8$ となる。
	(2)	$i = 0, \dots, n-1$ に対し、 X_i を S_i が単色となる事象の指示変数とすると、その期待値は $E(X_i) = \Pr(X_i = 1) = 1/8$ となる。したがって、期待値の線形性より、求める期待値は
		$\begin{aligned} E\left(\sum_{i=0}^{n-1} X_i\right) &= \sum_{i=0}^{n-1} E(X_i) \\ &= \frac{n}{8} \end{aligned}$ となる。
問 2	(3)	前問より、 \mathcal{F} の要素 S_0, \dots, S_{n-1} のうち、単色である集合の個数 X の期待値 $E(X)$ は $n/8$ であるので、 $n \leq 7$ のとき、 $E(X) < 1$ となる。しかしながら、 X は非負正数のみをとり得る確率変数であることから、 $\Pr(X = 0) = 0$ とすると
		$\begin{aligned} E(X) &= \sum_{i=0}^{n-1} i \Pr(X = i) \\ &\geq \sum_{i=1}^{n-1} \Pr(X = i) \\ &= 1 \end{aligned}$ となり、矛盾である。よって、2 色を用意し、 \mathcal{F} の台集合の各要素を独立かつ均等確率で彩色すると、所望の彩色が正の確率で得られるため、求める性質を持つ彩色が存在する。
	(4)	$\mathcal{G} = \{T_0, \dots, T_{n-1}\}$ を n 個の集合からなる k -一様集合族とする。 \mathcal{G} の台集合の要素を無作為に 2 色で塗り分けたとき、 $n < 2^{k-1}$ であるならば、所望の彩色を得る確率が正であることを示せば十分である。 \mathcal{G} の台集合の要素をそれぞれ独立かつ均等確率で、無作為に 2 色で塗り分ける。各 $T_i \in \mathcal{G}$ が単色となる確率は等しく 2^{1-k} である。よって、 \mathcal{G} の要素数 n が 2^{k-1} 未満であるとき、 Y_i を T_i が単色である事象の指示変数とすると、単色である集合の個数の期待値は
		$\begin{aligned} E\left(\sum_{i=0}^{n-1} Y_i\right) &= \sum_{i=0}^{n-1} E(Y_i) \\ &= n2^{1-k} \\ &< 1 \end{aligned}$ となる。したがって、前問と同様の議論により、 \mathcal{G} が単色である集合を含まない確率が 0 より大きくなるため、所望の彩色が存在する。

1

The sample solution provided here is for reference only.

English version

問 2	(1)	Because each element of S is colored independently and uniformly at random, the probability that every element of a given set $S_i \in \mathcal{F}$ is colored red is 2^{-4} , that is, $1/16$. Because the same applies to the case where the elements of S_i are all blue, the probability that S_i ends up monochromatic is their sum, that is, $1/8$.
	(2)	For $i = 0, \dots, n-1$, let X_i be the indicator random variable for the event that S_i is monochromatic, so that $X_i = 1$ if S_i is monochromatic and 0 otherwise. Note that $E(X_i) = \Pr(X_i = 1) = 1/8$. Hence, by linearity of expectation, the expected number of monochromatic sets is $\begin{aligned} E\left(\sum_{i=0}^{n-1} X_i\right) &= \sum_{i=0}^{n-1} E(X_i) \\ &= \frac{n}{8}. \end{aligned}$
	(3)	It suffices to show that a random coloring of the ground set S with two colors gives a desired one with positive probability. As in (2), color each element of S red or blue independently and uniformly at random. Since the expected number of monochromatic sets in \mathcal{F} is $n/8$, the assumption that $n \leq 7$ implies that this expectation is less than 1. However, because the number X of monochromatic sets in \mathcal{F} is a random variable that only takes on nonnegative integers up to $n-1$, if $\Pr(X=0) = 0$, we have $\begin{aligned} E(X) &= \sum_{i=0}^{n-1} i \Pr(X=i) \\ &\geq \sum_{i=1}^{n-1} \Pr(X=i) \\ &= 1, \end{aligned}$ a contradiction. Thus, the probability that \mathcal{F} has no monochromatic sets is positive. The proof is complete.
	(4)	Let $\mathcal{G} = \{T_0, \dots, T_{n-1}\}$ be a k -uniform family of n sets. We prove that if $n < 2^{k-1}$, randomly coloring the ground set of \mathcal{G} with two colors gives rise to no monochromatic sets in \mathcal{G} with positive probability. Color each element of the ground set red or blue independently and uniformly at random. For any $T_i \in \mathcal{G}$, the probability that T_i is monochromatic is 2^{1-k} . Let Y_i be the indicator random variable for the event that T_i is monochromatic. By linearity of expectation, the expected number of monochromatic sets in \mathcal{G} is $\begin{aligned} E\left(\sum_{i=0}^{n-1} Y_i\right) &= \sum_{i=0}^{n-1} E(Y_i) \\ &= n2^{1-k}. \end{aligned}$ Because $n < 2^{k-1}$ by assumption, this expectation is strictly less than 1, which implies that $\Pr\left(\bigcap_{i=0}^{n-1} T_i \text{ is not monochromatic}\right) > 0,$ as required.

2

記載されている解答例は、あくまで一例です。

The sample solution provided here is for reference only.

		入力系列 (input sequence)	出力系列 (output sequence)	
(a)		001011	000010	
		1010101	X010101	
問 1 (1)	(b)	S	I	$\delta: S \times I \rightarrow S$
		S_0	0	S_0
		S_0	1	S_1
		S_1	0	S_2
		S_1	1	S_1
		S_2	0	S_0
		S_2	1	S_3
		S_3	0	S_2
		S_3	1	S_1
(c)				<pre> graph LR S0((S0)) -- "0/0" --> S0 S0 -- "1/0" --> S1((S1)) S1 -- "0/0" --> S0 S1 -- "1/0" --> S1 S1 -- "0/0" --> S2((S2)) S2 -- "0/0" --> S1 S2 -- "1/1" --> S2 S2 -- "0/0" --> S3((S3)) S3 -- "1/0" --> S0 S3 -- "0/0" --> S2 S3 -- "1/0" --> S3 </pre>

2

記載されている解答例は、あくまで一例です。

The sample solution provided here is for reference only.

問 1 (2)	(a)	Q_t	Q_{t+1}	J	K			
		0	0	0	X			
		0	1	1	X			
		1	0	X	1			
		1	1	X	0			
	(b)	S_i	x	S'_j	F_1	F_0	y	
		m_1	m_0	m'_1	m'_0	J_1		K_1
		0	0	0	0	0	X	0
		0	0	1	1	0	X	1
		0	1	0	1	1	X	1
		0	1	1	0	0	X	0
		1	0	0	0	X	1	0
		1	0	1	1	X	0	1
	(c)	J_1		x				
		m_1	m_0	0	1			
		0	0	0	0			
		0	1	1	0			
		1	1	X	X			
	(d)	$J_1 = m_0 \bar{x}$						

2

記載されている解答例は、あくまで一例です。

The sample solution provided here is for reference only.

問 2	(1)	(A) (ウ)
		(B) (エ)
		(C) (ア)
		(D) (イ)
	(2)	50 (bit)
	(3)	処理の対象 (Target(s)) (イ)
		処理の方法 (Way to forward) (ア)
	(4)	サブネットマスク (Subnet mask) 255.255.255.224
		ネットワークアドレス (Network address) 192.168.123.96
		始点 IP アドレス (Starting IP address) 192.168.123.97
		終点 IP アドレス (Ending IP address) 192.168.123.126
		プロードキャストアドレス (Broadcast address) 192.168.123.127
		利用可能な最大のサブネット数 (Number of subnets) 8

3

記載されている解答例は、あくまで一例です。

The sample solution provided here is for reference only.

問 1	(1)	(A)	(a)
		(B)	(d)
		(C)	(a)
		(D)	(g)
		(E)	(a)
		(F)	(g)
		(G)	(b)
		(H)	(h)
		(I)	(j)
		(J)	(k)
(2)	sortA	1, 2, 4, 5, 7, 8, 6, 9	
	sortB	1, 2, 4, 7, 8, 5, 6, 9	
	(3)	比較 (comparison)	$n(n-1)/2$
		swap	n
	(4)	比較 (comparison)	$n(n-1)/2$
		swap	$n(n-1)/2$
(5)	<pre>int tmp = in[i]; in[i] = in[j]; in[j] = tmp;</pre>		

3

記載されている解答例は、あくまで一例です。

The sample solution provided here is for reference only.

問2	(1)	(A) (d)																			
		(B) (i)																			
		(C) (h)																			
	(2)	14																			
	(3)	$(N - M + 1)M$																			
	(4)	(D) m - 1 - i																			
	(5)	<table border="1"><tr><td>a</td><td>b</td><td>c</td><td>d</td><td>e</td><td>f</td><td>g</td><td>h</td><td>i</td><td>j</td></tr><tr><td>3</td><td>2</td><td>7</td><td>6</td><td>5</td><td>1</td><td>10</td><td>10</td><td>4</td><td>10</td></tr></table>	a	b	c	d	e	f	g	h	i	j	3	2	7	6	5	1	10	10	4
a	b	c	d	e	f	g	h	i	j												
3	2	7	6	5	1	10	10	4	10												
(6)		(E) (i)																			
		(F) (b)																			
		(G) (h)																			
		(H) (k)																			
	(7)	7																			