
 1

1

問 1 （日本語版）

次の各問いに答えなさい．

(1) {𝑎, 𝑏} を文字集合とする，長さ 3 の文字列全体の集合を 𝑆! とする．𝑆! の要素をすべて列挙しなさ

い．

(2) 長さ 𝑛 の文字列 𝑐"𝑐#⋯𝑐$ に対して，末尾の文字 𝑐$ を文字列の先頭に移動させて𝑐$𝑐"⋯𝑐$%" に変

換することを，巡回シフトという．巡回シフトを用いて，文字列からなる集合に，次の関係“~”を定

義する．

 文字列 𝒔" と 𝒔𝟐 に対して，𝒔"~𝒔𝟐とは，一方を他方の 0 回以上の巡回シフトによって得られるこ

とである．

例えば，(1)で求めた集合 𝑆! において，𝑎𝑏𝑎~𝑎𝑎𝑏, 𝑎𝑏𝑎~𝑏𝑎𝑎である．また，一方の文字列の巡回シフト

で他方の文字列が得られないときは，𝒔𝟏 ≁ 𝒔𝟐と書く．例えば，𝑎𝑏𝑎 ≁ 𝑎𝑏𝑏である．

 上で定義された関係“~”が，同値関係の条件を満たしていることを証明しなさい．長さ 𝑛 の文字

列の集合 𝑆$ 上の同値関係とは，任意の 𝒔𝟏, 𝒔𝟐, 𝒔𝟑 ∈ 𝑆$ に対して，反射律：𝒔𝟏~𝐬𝟏，対称律：𝒔"~𝒔𝟐 ⟹

𝒔#~𝒔𝟏，推移律：𝒔𝟏~𝒔𝟐かつ𝒔𝟐~𝐬𝟑 ⟹ 𝒔𝟏~𝐬𝟑の 3 つの条件が全て成り立つことである．

(3) (1)で求めた 𝑆! を，(2)の同値関係“~”による同値類に分けて，各同値類の要素をすべて列挙しなさ

い．

(4) {𝑎, 𝑏} を文字集合とする，長さ 𝑛	(≥ 1) の文字列全体の集合を 𝑆$ とする．𝑆$ に対して，(2) で与え

た同値関係を定義する．長さ 𝑛 の文字列の巡回シフトによる同値類の個数を𝑁(𝑛) と表す．

𝑁(1), 𝑁(2), 𝑁(3), 𝑁(4) をそれぞれ求めなさい．

(5) (4)の問題文で定義した𝑁(𝑛)について，次の不等式を証明しなさい．

𝑁(𝑛) 	≥ 	
2$

𝑛

 2

問 1 （English version）
Solve the following problems.

(1) Let 𝑆! be the set of strings of length 3 over the alphabet {𝑎, 𝑏}. List all element of 𝑆!.

(2) A circular shift on a string 𝒄 = 𝑐"𝑐#…𝑐$ of length 𝑛	 ≥ 1 is an operation that turns 𝒄 into 𝑐$𝑐"…𝑐$%" by

moving the last character 𝑐$ of 𝒄 to its first position while shifting all other characters to the right by one

position. Circular shifts naturally induce a binary relation ~ between strings, where for any pair of strings 𝒔𝟏, 𝒔𝟐,

the relation 𝒔"~𝒔𝟐 holds if and only if one can be obtained by applying a circular shift, possibly multiple times,

to the other. We write 𝒔𝟏 ≁ 𝒔𝟐 to mean that 𝒔𝟏 is never reachable by circular shifting 𝒔𝟐 and vice versa. For

instance, we have 𝑎𝑏𝑎	~	𝑎𝑎𝑏 and 𝑎𝑏𝑎	~	𝑏𝑎𝑎 while 𝑎𝑏𝑎	 ≁ 	𝑎𝑏𝑏.

 Prove that the binary relation ~ is an equivalence relation on a set of strings of length 𝑛 by showing that it

satisfies all the required conditions for it to be one, namely for any strings 𝒔𝟏, 𝒔𝟐, 𝒔𝟑 of length 𝑛, it holds that

𝒔𝟏~𝐬𝟏 (reflexivity), that 𝒔"~𝒔𝟐 ⟹ 𝒔#~𝒔𝟏 (symmetry), and that 𝒔𝟏~𝒔𝟐 and 𝒔𝟐~𝐬𝟑 ⟹ 𝒔𝟏~𝐬𝟑

(transitivity).

(3) Explicitly write down the equivalence classes which are induced by ~ and partition 𝑆! given in (1).

(4) Let 𝑆$ be the set of strings of length 𝑛	 ≥ 1 over {𝑎, 𝑏} and denote by 𝑁(𝑛) the number of equivalence

classes induced by ~ on 𝑆$. Find 𝑁(1), 𝑁(2), 𝑁(3), and 𝑁(4).

(5) Prove the following inequality

𝑁(𝑛) ≥
2$

𝑛 	,

where 𝑁(𝑛) is the number of equivalence classes as defined in (4).

 3

問 2 （日本語版）

要素数が 4 の集合だけを要素とする集合を 4-一様集合族といい，集合族 ℱ = {𝑆), … , 𝑆$%"} の要素の和集

合

𝑆 =>𝑆*

$%"

*+)

	

を ℱ の台集合と呼ぶ．例えば，集合族

𝒜 = {{1, 2, 3, 4}, {3, 4, 5, 6}, {1, 3, 5, 7}}	

は {1	,2, 3, 4}, {3, 4, 5, 6}, {1, 3, 5, 7} の 3 つの集合を要素とするが，それぞれ 4 つの要素からなるため 𝒜

は 4-一様集合族であり，𝒜 の台集合は {1, 2, 3, 4, 5, 6, 7} である．

ℱ = {𝑆), … , 𝑆$%"} を 𝑛 個の集合からなる 4-一様集合族とし，その台集合 𝑆 の要素を赤と青の 2 色で塗

り分けることを考える．ここで ℱ に含まれる集合 𝑆* の要素が全て同一の色で塗られるとき，𝑆* は単色

であるという．例えば前述の 𝒜 の台集合 {1, 2, 3, 4, 5, 6, 7} の要素を，それぞれ，1, 2, 7を赤，3, 4, 5, 6を青

に彩色すると，𝒜 の要素 {1, 2, 3, 4} と {1, 3, 5, 7} はどちらも単色ではないが，{3, 4, 5, 6} は単色となる．

今，ℱ に含まれるどの集合も赤の要素と青の要素を両方少なくとも 1 つは含むよう，つまりどの 𝑆* も

単色ではないように台集合の要素を彩色したい．以下の問いに答えなさい．

(1) ℱ の台集合 𝑆 の要素をそれぞれ独立かつ均等確率で無作為に赤と青で塗り分ける．つまり 𝑆 のどの

要素も独立に，赤となる確率と青となる確率が等しく
"
#
 となる．このとき，ℱ のとある要素 𝑆* に含

まれる 4 つの要素が全て赤となる確率を求めなさい．また 𝑆* が単色となる確率を求めなさい．

(2) 前問と同様，ℱ の台集合 𝑆 の要素をそれぞれ独立かつ均等確率で無作為に赤と青で塗り分ける．ℱの

要素 𝑆), … , 𝑆$%" のうち，単色である集合の個数について，その期待値を求めなさい．

(3) ℱ の要素数 𝑛 が 7 以下であるならば，どの 𝑆* も単色でないように，台集合 𝑆 の要素を 2 色で塗り

分けられることを証明しなさい．

(4) 𝑘 を 2 以上の自然数とする．要素数が 𝑘 の集合だけを要素とする集合を 𝑘-一様集合族という．4-

一様集合族と同様，その台集合の各要素を 2 色で塗り分けたとき，集合族の要素のうち，その要素が

全て同一の色で塗られたものを単色であるという．任意の 𝑘-一様集合族は，その要素数が 2,%" 未満

であるならば，どの要素も単色でないように，その台集合の要素を 2 色で塗り分けられることを証明

しなさい．

 4

問 2 （English version）

A family ℱ = {𝑆), … , 𝑆$%"} of finite sets with the ground set

𝑆 =>𝑆*

$%"

*+)

	

is 4-uniform if for any 𝑆* ∈ ℱ, it holds that |𝑆*| = 4. For instance, the following family

𝒜 = {{1, 2	,3	,4}, {3, 4, 5, 6}, {1, 3, 5, 7}}

is 4-uniform because each of its elements {1	,2, 3, 4}, {3, 4, 5, 6}, {1, 3, 5, 7} contains exactly 4 elements, while its

ground set is their union {1, 2, 3, 4, 5, 6, 7}.

 Let ℱ = {𝑆), … , 𝑆$%"} be a 4-uniform family that consists of 𝑛 sets. Consider coloring each element of its ground

set 𝑆 blue or red. We say that a set 𝑆* ∈ ℱ is monochromatic if every element in 𝑆* is of the same color. As an

example, coloring the ground set {1, 2, 3, 4, 5, 6, 7} of the family 𝒜 given above by coloring 1, 2, and 7 red and 3, 4,

5, and 6 blue makes the element {3,  4,  5,  6} ∈ 𝒜 monochromatic, while the other two in 𝒜 are mixed colored under

this coloring. We investigate whether it is possible to color the ground set 𝑆 of ℱ in such a way that none of

𝑆), … , 𝑆$%" is monochromatic.

(1) Color each element of the ground set 𝑆 of a 4-uniform family ℱ = {𝑆), … , 𝑆$%"} red or blue independently and

uniformly at random, so that for any 𝑠	 ∈ 𝑆 , its color is chosen independently with 𝑃𝑟(𝑠 is red) =

𝑃𝑟(𝑠 is blue) = "
#
. What is the probability that all four elements of a given set 𝑆* ∈ ℱ are colored red? Under the

same random coloring, what is the probability that a given set 𝑆* ∈ ℱ is monochromatic?

(2) Randomly color 𝑆 as in the previous question. What is the expected number of monochromatic sets in ℱ?

(3) Show that if the number 𝑛 of sets in ℱ is at most 7, then it is possible to color 𝑆 with two colors such that none

of 𝑆), … , 𝑆$%" is monochromatic.

(4) Let 𝑘	 ≥ 2 be a natural number. A family is 𝑘-uniform if each of its elements consists of exactly 𝑘 elements.

Consider coloring the ground set of a 𝑘-uniform family with two colors. As before, a set is monochromatic if its

elements are all of the same color. Show that if the number of sets in a 𝑘-uniform family is less than 2,%", it is

possible to color the ground set with two colors in such a way that no elements in the family are monochromatic.

 5

2

問 1 (日本語版)

出力が現在状態と入力によって決定される有限オートマトンであるミーリー・マシンは，タプル 𝑀	 =
	(𝑆, 𝐼, 𝑂, 𝛿, 𝜆, 𝜎))で記述できる．ここで，𝑆は状態の集合，𝐼は入力アルファベット，𝑂は出力アルファベッ

トである．また，𝛿は遷移関数であり，𝛿:	𝑆 × 𝐼 → 𝑆である．𝜆は出力関数であり，𝜆:	𝑆 × 𝐼 → 𝑂 である．𝜎) ∈ 𝑆

は開始状態である．以下の問に答えなさい．

(1) 入力アルファベット𝐼，および，出力アルファベット𝑂は，いずれも 2 値信号{0, 1} とする．入力系列

101 を検出し，検出した際に1を，それ以外は0を出力する検出器を実現する状態数が 4 のミーリー・

マシンを考える．状態集合𝑆 = {𝑆), 𝑆", 𝑆#, 𝑆!}とする．開始状態𝜎)は任意とする．この検出器の入力系列

が0101010 の場合の出力系列は0X01010となる．開始状態が任意であるため一意に定まらないビット

の値はXとしている．また，次の(a)の解答でもそのようにしなさい．

(a) 入力系列が001011，1010101の場合の出力系列をそれぞれ答えなさい．

(b) 検出器を実現する遷移関数𝛿に対応する，解答欄に示された状態遷移表を完成させなさい．

(c) 解答欄に示された，検出器を実現するミーリー型状態遷移図を完成させなさい．

(2) 以下では，検出器を 2 つのマスタースレーブ型 JK-フリップフロップ𝐹)，𝐹" と組合せ回路を利用して

実現することを考える．𝐹)の入力𝐽，𝐾および出力𝑄をそれぞれ 𝐽)，𝐾)，𝑄)とし，𝐹"の入力𝐽，𝐾および

出力𝑄をそれぞれ 𝐽"，𝐾"，𝑄"とする．

 検出器の入力を𝑥とし，出力を𝑦とする．各 1ビットの𝑚)，𝑚"を利用して𝑖 = 2 ×𝑚" +𝑚)とし，現在

状態を𝑆*によって表す．同様に各 1ビットの𝑚)
-，𝑚"

-を利用して𝑗 = 2 ×𝑚"
- +𝑚)

-とし，遷移後状態を𝑆.-

によって表す．𝐹)で𝑚)から 𝑚)
- への遷移を，𝐹"で𝑚"から𝑚"

- への遷移を表すとする．

 JK-フリップフロップの特性方程式を次に示す．𝑄/，𝑄/0"はそれぞれ，𝑄の現在状態，遷移後状態を

表す．

𝑄/0" = 𝐽𝑄/]]] + 𝐾̂𝑄/

(a) 解答欄に示された JK-フリップフロップの励起表を完成させなさい．値が0と1のどちらでも

よい場合には Xを記入しなさい．

(b) JK-フリップフロップ 𝐹)，𝐹"を利用した検出器の論理回路に対応する，解答欄に示された状

態遷移表を完成させなさい．値が0と1のどちらでもよい場合には Xを記入しなさい．

次に，現在状態と入力から𝐽"を構成する論理回路を簡単化する．

(c) 解答欄に示された𝐽" のカルノー図を完成させなさい．値が0と1のどちらでもよい場合には

Xを記入しなさい．

(d) 𝐽"を最小限の項とリテラルで構成される論理式で表しなさい．

 6

問 1 (English version)

A Mealy Machine, which is a finite automaton whose output is determined by the current state and the input, can be

described as a tuple	 𝑀	 = 	 (𝑆, 𝐼, 𝑂, 𝛿, 𝜆, 𝜎)). Here, 𝑆 is the set of states, 𝐼 is the input alphabet, and	𝑂 is the

output alphabet. 𝛿:	𝑆 × 𝐼 → 𝑆 is the transition function. 𝜆:	𝑆 × 𝐼 → 𝑂 is the output function. 𝜎) ∈ 𝑆 is the initial

state. Answer the following questions.

(1) Consider a 4-state Mealy Machine that detects the sequence 101 from a binary input stream. This machine,

henceforth called the detector, outputs 1 when the sequence is detected, and 0 otherwise. Let 𝐼 = 𝑂 = {0, 1}

be the input and output alphabets, and let 𝑆 = {𝑆), 𝑆", 𝑆#, 𝑆!} be the set of states. The initial state 𝜎) is arbitrary.

When the input sequence is	0101010, the corresponding output sequence is 0X01010, where X represents a

bit that cannot be uniquely determined unless the initial state is fixed. Use the same notation in your answer to

(a).

(a) Give the output sequences for the input sequences 001011 and 1010101.

(b) Complete the state transition table, which is provided in the answer sheet, for the transition function	𝛿

of the detector.

(c) Complete the Mealy-type state transition diagram implementing the detector. The diagram is provided

in the answer sheet.

(2) In the following, consider implementing the detector using two master-slave JK flip-flops, 𝐹) and 𝐹", along

with combinational logic circuits. Let 𝐽)，𝐾) and 𝑄)	be the inputs 𝐽, 𝐾, and output 𝑄 of 𝐹), respectively.

Similarly, let 𝐽"，𝐾" and 𝑄" be the inputs 𝐽, 𝐾, and output 𝑄 of 𝐹", respectively.

 Let 𝑥 be the input to the detector, and 𝑦 be the output. Let 𝑆* be the current state with 𝑖 = 2 ×𝑚" +𝑚)
where 𝑚) and 𝑚" are 1-bit variables. Likewise, let 𝑆.- be the next state with 𝑗 = 2 ×𝑚"

- +𝑚)
- where 𝑚)

-

and 𝑚"
- are 1-bit variables. The transition from 𝑚) to 𝑚)

- is represented by 𝐹), and the transition from 𝑚"

to 𝑚"
- is represented by 𝐹".

 The characteristic equation of a JK flip-flop is given below,

𝑄/0" = 𝐽𝑄/]]] + 𝐾̂𝑄/	,

where 𝑄/ and 𝑄/0" are the current and next states of 𝑄, respectively.

(a) Complete the excitation table of the JK flip-flop provided in the answer sheet. Use X for a bit that can

be either 0 or 1.

(b) Complete the state transition table, provided in the answer sheet, for the detector implemented using JK

flip-flops 𝐹) and 𝐹". Use X for a bit that can be either 0 or 1.

Next, we would like to simplify the logic circuit that generates 𝐽" from the current state and the input.

(c) Complete the Karnaugh map for 𝐽" provided in the answer sheet. Use X for a bit that can be either 0

or 1.

(d) Express 𝐽" as a logic expression using the minimal number of terms and literals.

 7

問 2 （日本語版）

次の各問に答えなさい．

(1) (A)～(D)は OSI (Open Systems Interconnection) 参照モデルの一部である．以下の各層について，最も適

切な処理を選択肢①の中からそれぞれ一つ選びなさい．

(A) ネットワーク層

(B) データリンク層

(C) 物理層

(D) トランスポート層

選択肢①：

(ア)ビット列を電気信号に変換して送信する

(イ)ネットワークの端から端までの通信管理を行う

(ウ)IP (Internet Protocol) アドレスを利用し 1つ以上のネットワークを経由して宛先までパケットを転

送する

(エ)MAC (Media Access Control) アドレスを利用し物理層を介して隣接ノードにフレームを転送する

(2) CSMA/CD (Carrier Sense Multiple Access with Collision Detection)は， イーサネットで利用されている通

信方式の一つであり，通信を監視し回線に空きがあれば通信を開始，仮に衝突が発生した場合にラン

ダムな時間待機した後に再送する方式である．衝突検出には一定時間（往復伝播時間以上）送信が続

いている必要がある．電気信号の伝播速度が 2.0 × 101 m/s，ネットワークの長さが 500 m，通信速

度が 10 Mbps のとき，CSMA/CD において衝突を検出可能とするために必要な最小フレーム長を bit

単位で求めなさい．

(3) イーサネットスイッチのポート 1 に MACアドレス A が学習されている．MAC アドレス A を持つ端

末から未学習の MACアドレス B を持つ端末宛にフレームを送信する．MAC アドレス B を持つ端末

はスイッチのポート 2 に接続されている．このとき，スイッチはどのように転送するかを，処理の対

象を選択肢②から，処理の方法を選択肢③からそれぞれ一つ選びなさい．

選択肢②：

(ア)全ポート

(イ)ポート 1 を除くすべてのポート

(ウ)ポート 1

(エ)ポート 2

(オ)MACアドレス A

(カ)MACアドレス B

選択肢③：

(ア)フレーム送信

(イ)フレーム破棄

(ウ)フレーム生成

(エ)ルーティングテーブルを参照

 8

(4) あるローカルエリアネットワーク (Local Area Network, LAN) について，Internet Protocol Version 4 の

IP アドレスおよびサブネットマスクがドット付き 10進表記でそれぞれ 192.168.123.123，255.255.255.0

であった．このネットワークを，以下の 2 つの条件を共に満たすようにサブネットに分割する．

条件 1：1サブネットあたりに利用可能なホストの台数が少なくとも 20 台

条件 2：使用可能なサブネットの数が最大

IPアドレス 192.168.123.123 が属するサブネットのサブネットマスク，ネットワークアドレス，このサ

ブネット内のホストの始点 IP アドレス，終点 IP アドレス，ブロードキャストアドレス，およびサブ

ネット数を求めなさい．

 9

問 2 (English version)

Solve the following questions.

(1) Items (A) through (D) are layers of the OSI (Open Systems Interconnection) reference model. For each item, choose

the most appropriate function from the list of options① below, and write on the answer sheet the letter of your

answer for each item.

(A) Network Layer

(B) Data link Layer

(C) Physical Layer

(D) Transport Layer

Options①:

(ア) Converts a stream of raw bits into electrical signals and transmits them

(イ) Provides end-to-end communication services

(ウ) Transfers packets to a destination across one or more networks based on IP (Internet Protocol) address

(エ) Transfers frames to a next hop node based on the MAC (Media Access Control) address

(2) CSMA/CD (Carrier Sense Multiple Access with Collision Detection) is a communication method used in Ethernet.

A node senses the communication channel and begins transmission when the channel is idle. If a collision occurs,

the node waits a random period of time and retransmits the data. In order to detect a collision, the transmission

must continue until one complete round-trip propagation time has passed. Given an electrical signal propagation

speed of 2.0 × 101 m/s, a network length of 500 m, and a transmission rate of 10 Mbps, calculate the

minimum frame length in units of bits required to ensure that terminals can detect collisions in a CSMA/CD

network.

(3) Consider the following situation: MAC address A has been learned on port 1 of an Ethernet switch. A node with

MAC address A sends a frame to a node with MAC address B, which has not yet been learned by the switch. A

node with MAC address B is actually connected to port 2. Then, how does the switch forward the frame? Choose

the destination (i.e., target(s)) from Option ②, and the way to forward from Option ③.

Option②：

(ア) All ports

(イ) All ports except for Port 1

(ウ) Port 1

(エ) Port 2

(オ) MAC Address A

(カ) MAC Address B

Option③：

(ア) Transmits the frame

(イ) Drops the frame

(ウ) Generates the frame

(エ) Refers the routing table

 10

(4) Consider a local area network (LAN) whose IPv4 address and subnet mask are 192.168.123.123 and 255.255.255.0,

respectively (in dotted decimal notation). We would like to divide the network into subnets that satisfy both of the

following conditions:

Condition 1：Each subnet must support at least 20 usable host addresses

Condition 2：The number of available subnets must be as large as possible

Under these conditions, for the subnet to which the IP address 192.168.123.123 belongs, what are the subnet mask,

network address, starting IP address, ending IP address, broadcast address, and the number of subnets?

 11

3
問１(日本語版)

図 1はある 2種類の内部ソートアルゴリズムを sortA関数と sortB関数として実装した C 言語のプロ

グラムの一部である．ここで，ソートの対象は要素数 𝑛 の整数型配列 in で表され，swap は in[i]と

in[j]の要素を交換する関数である．要素は昇順にソートされる．以下の問いに答えなさい．

(1) 以下の記述はそれぞれの関数の動作を説明したものである．空欄 A ～ J に当てはまるものを (a) ～

(m) の選択肢の中からひとつ選んで解答欄に記号を記入しなさい．同じ選択肢を複数回選択しても構

わない．なお，sortB関数では配列の先頭からある部分までの要素が昇順に並んでいれば，例えそれ

らの要素が後で他の要素と交換されるとしても，その部分はソート済であると呼ぶ．

sortA 関数は A の要素の中から B の要素をひとつ取り出す．それを C の要素の D にある要素と配

列の位置を交換した上でソート済とみなす．それを全ての要素がソートされるまで繰り返す．
sortB 関数は E の要素の中から F の要素を取り出す．それを G の要素の H にある要素と比較し，

自身より I 場合相互に交換する．さらに自身よりひとつ前の要素に対して同様の比較と交換を繰り返し

行い，配列の先頭に達するか自身より J 要素が見つかったらはじめのステップに戻り，それを全ての要

素がソートされるまで繰り返す．

(a)未ソート (b)ソート済 (c)全部 (d)最小 (e)最大 (f)任意 (g)先頭 (h)末尾
(i)小さい (j)大きい (k)小さいもしくは等しい (l)大きいもしくは等しい (m)等しい

(2) 𝑛 = 8 として配列{4,8,7,2,1,5,6,9}を inに入力し，sortA関数と sortB関数を用いてソートさ

せる．ループ変数 i が i=3 から 4 に増加する時点の in に格納されている数値を，要素番号が小さい

順にカンマ区切りで解答欄に記入しなさい．例えば in={0,1,2,3,4,5,6,7}であれば解答欄には

0,1,2,3,4,5,6,7 と記入しなさい．

(3) sortA 関数について，in に格納されている数値同士が比較される回数と，swap 関数が呼び出される

回数をそれぞれ 𝑛 を用いて表しなさい．

(4) 与えられた入力列 in があらかじめ降順に並んでいる，かつ要素に重複がない場合，sortB 関数では

20行目の while文は常に in[j]<in[j-1]の条件を満たす．このとき inに格納されている数値同士

が比較される回数と，swap関数が呼び出される回数をそれぞれ 𝑛 を用いて表しなさい．

(5) swap関数の K で表される空欄を埋めなさい．複数行になっても構わない．

 12

1. void swap(int *in, int i, int j){
2. K
3. }
4.
5. void sortA(int n, int *in){
6. int i, j;
7. for(i=0; i<n; i++){
8. int k = i;
9. for(j=i+1; j<n; j++){
10. if(in[j]<in[k]) k = j;
11. }
12. swap(in, i, k);
13. }
14. }
15.
16. void sortB(int n, int *in){
17. int i, j;
18. for(i=0; i<n-1; i++){
19. int j = i+1;
20. while(in[j]<in[j-1] && j>0){
21. swap(in, j, j-1);
22. j--;
23. }
24. }
25. }

図１ 2種類の内部ソートアルゴリズムを実装した C言語のプログラムの一部

 13

問１ (English version)

Figure 1 shows part of a C language program that implements two different in-place sorting algorithms as functions
sortA and sortB. Both functions sort the elements of an integer type array in of size 𝑛, in ascending order using

function swap, which exchanges elements of in[i] and in[j]. Solve the following problems.

(1) The following two paragraphs describe the procedures taken by the pair of sorting functions. Choose the correct

answer from items (a) - (m) and fill in the blanks A - J . Write on the answer sheet the letter of your answer

for each blank. You may choose any item more than once if necessary. Note that when describing sortB, at any

step of sorting, the 𝑥th element of in is said to be sorted if the elements of in[i] for 𝑖 = 0,… , 𝑥 are in

ascending order regardless of whether its position can be swapped later in the sorting procedure.

sortA first scans A elements to locate B element, and then exchanges the located one with the one at

 D element of C elements, making it sorted. Repeating this procedure until all the elements are sorted.
sortB function takes F element of E elements and compares it against H element of G elements.

If H element is I , their positions are exchanged and unless it reaches the head of the array, it is then compared

against the next one forward. Repeating this compare-and-exchange process until it reaches the head of the array or a

 J element is found. Repeating the whole procedure described above until all the elements are sorted.

(a) the unsorted (b) the sorted (c) all the (d) a minimum (e) a maximum (f) any

(g) the head (h) the tail (i) smaller (j) larger (k) smaller or equal (l) larger or equal

(m) equal

(2) Set 𝑛 = 8 and suppose sorting in={4,8,7,2,1,5,6,9} by sortA and sortB. What is in at the point

when the loop variable i increments from 3 to 4? Write the elements in ascending order of array index from

in[0] to in[7] for each case. Use a comma between elements. For example, if in={0,1,2,3,4,5,6,7},

write 0,1,2,3,4,5,6,7 on the answer sheet.

(3) Give the total number of comparisons sortA makes between elements of in and that of swap calls both as a

function of 𝑛.

(4) If the input array in is sorted in descending order and has no identical elements, the first condition

in[j]<in[j-1] to continue the while loop at line 20 of Figure 1 is always met. Give the total number of

comparisons sortB makes between elements of in and that of swap calls both as a function of 𝑛.

(5) Complete the code given in Figure 1 by filling in the blank K in the swap function. Multiple lines are

allowed if desired.

 14

1. void swap(int *in, int i, int j){
2. K
3. }
4.
5. void sortA(int n, int *in){
6. int i, j;
7. for(i=0; i<n; i++){
8. int k = i;
9. for(j=i+1; j<n; j++){
10. if(in[j]<in[k]) k = j;
11. }
12. swap(in, i, k);
13. }
14. }
15.
16. void sortB(int n, int *in){
17. int i, j;
18. for(i=0; i<n-1; i++){
19. int j = i+1;
20. while(in[j]<in[j-1] && j>0){
21. swap(in, j, j-1);
22. j--;
23. }
24. }
25. }

Figure １ Part of a C language program that implements two different in-place
sorting algorithms

 15

3
問２（日本語版）

長さ𝑁のテキストと呼ばれる文字列𝑇 = 𝑇)𝑇"𝑇#…𝑇2%"の中から長さ𝑀のパターンと呼ばれる文字列𝑃 =

𝑃)𝑃"𝑃#…𝑃3%" を照合して探し出し，テキスト中のパターンと一致する部分文字列の先頭位置の添え字番号

を出力する文字列照合のアルゴリズムについて考える．ただし，テキストの中にパターンと同じ文字列が

複数存在する場合は，添え字番号の一番小さいものだけを返し，存在しなければ−1が返されて終了する．

ここで，𝑁 ≥ 𝑀 ≥ 1を仮定し，対象とする文字は簡単のためアルファベットの小文字 aから jまでの 10 文

字に限定する．つまり，𝑇*，𝑃. ∈ {a,b,c,d,e,f,g,h,i,j} (𝑖 = 0, 1, 2,⋯ , 𝑁 − 1, 𝑗 = 0, 1, 2, ⋯ , 𝑀 − 1)と
する．例えば，𝑇=abcdefghiabcdef，𝑃=def とすると，𝑃)𝑃"𝑃#と一致するテキスト中の部分文字列は，

𝑇!𝑇4𝑇5と𝑇"#𝑇"!𝑇"4である．パターンとの最初の完全一致は𝑇!から始まっているため，アルゴリズムは 3 を返

す．
さて，このような文字列照合のアルゴリズムを一般的なプログラミング言語で実装する際には，文字列

を配列で保存することが一般的に考えられる．そこで，長さ𝑁の文字列𝑋を配列𝑋[0:𝑁 − 1]で表し，

𝑋[𝑚]		(0 ≤ 𝑚 ≤ 𝑁 − 1)は文字列𝑋中の𝑚番目の文字を表すものとする．また，𝑋[𝑚: 𝑛]			(0 ≤ 𝑚 < 𝑛 ≤ 𝑁 − 1)

は文字列𝑋の𝑚番目の文字から𝑛番目の文字までの部分文字列を表すとする．
図 2 は𝑇=aceafadcadcfcaf，𝑃=cfcaf のとき，テキストの最初の文字（つまり，添え字番号 0 の文

字）から始めて，長さ𝑀の連続した部分文字列（そのテキストでの位置を比較対象箇所と呼ぶ）とパターン

との照合を順次前から 1 文字ずつ一致しているかを調べ，不一致が起こったら，テキストの比較対象箇所

を 1 文字ずつずらしていくアルゴリズム(StringMatch1 とする)の様子をステップ 3 まで示している．

ステップ 1 では①で不一致，ステップ 2 では③で不一致が起こり，テキストにおける比較対象箇所を順次

1 文字ずつずらしている．図 3は StringMatch1の疑似コードである．このとき次の(1)〜(3)の問いに答

えなさい．

(1) 空欄 A 〜 C に当てはまるものを(a)〜(i)の選択肢の中からひとつ選び，疑似コードが上記の

StringMatch1の文字列照合アルゴリズムを表すように完成させなさい．

(a) j>n (b) j<n (c) j>m (d) j<m (e) n (f) m (g) i (h) j (i) i+j

(2) StringMatch1において，𝑇=aciacadabgag，𝑃=abgaとしたとき，アルゴリズムが終了した時点で

の変数 sumの値を求めなさい．

(3) StringMatch1 では長さ𝑁のテキストと長さ𝑀のパターンが与えられたとき，文字の比較の回数は最

大何回になるか，𝑁と𝑀を用いて表しなさい．

 16

ステップ 1

ステップ 2

ステップ 3

図 2 StringMatch1の探索の例

 17

図 3 StringMatch1の疑似コード

図 1 StringMatch1における照合の例
FUNCTION StringMatch1(T, P):

 // T: テキスト（0 〜 N−1 のインデックス）

 // P: パターン（0 〜 M−1 のインデックス）

 n ← length(T) // length(X)は文字列 Xの長さを返す

 m ← length(P)

 // テキストの開始位置 i の照合対象となる部分文字列についてチェックする

 sum ← 0 // 総比較回数

 for i from 0 to n − m do

 j ← 0

 // 前から順に 1文字ずつパターンと比較

 while A do

 sum ← sum + 1

 if T[B] == P[C] then

 j ← j + 1

 else

 break while

 end if

 end while

 // 完全一致したら，その添え字 iを返す

 if j = m then

 return i

 end if

 end for

 // 見つからなければ-1を返す

 return -1

end FUNCTION

 18

StringMatch1 の探索方法では，不一致が起こるたびにテキスト中の比較対象箇所をたった 1 文字し

かずらさないため効率が悪い．そこで，より効率的に探索するアルゴリズムを考える(StringMatch2 と

する)．StringMatch2では，StringMatch1 と同様，テキストの先頭からパターンを探索するが，この

とき，パターンの後ろから順に 1 文字ずつ比較する．

StringMatch2 では，文字の不一致が起こった場合，テキスト中の現在の比較対象箇所における部分文

字列の末尾文字に注目し，その文字がパターンのどこにあるか（または，ないか）によって，テキストの次

の比較対象箇所を効率的にずらす．現在の比較対象箇所の末尾を 𝑇[𝑘] としたとき，𝑃[0:𝑀 − 2]の中に

𝑇[𝑘]と同一の文字が含まれているか否かに関して，次の 2つが考えられる：

Ⅰ: 𝑃[0:𝑀 − 2]の中に𝑇[𝑘]と同一の文字は存在しない，

Ⅱ: 𝑃[0:𝑀 − 2]の中に𝑇[𝑘]と同一の文字が存在する．

Ⅰのとき，テキストの次の比較対象箇所を𝑇[𝑘 + 1]からになるようにずらし，新しい部分文字列𝑇[𝑘 + 1: 𝑘 +

𝑀]と𝑃[0:𝑀 − 1]の照合を後ろから行う．Ⅱの場合，𝑇[𝑘]が表す文字と𝑃[𝑗]（ただし，𝑗 = 0, 1, … , 𝑀 − 2）が

表す文字が等しくなる𝑗のうち一番大きいものを𝑗’としたとき，テキストの次の比較対象箇所を，𝑇[𝑘]と𝑃[𝑗’]

が揃うようにずらし，パターンとの照合を後ろから行う．

具体的に，StringMatch2で，テキスト𝑇=aceafadcadcfcafからパターン𝑃=cfcafを探し出す際の

ステップごとの照合の様子を図 4 に示す．ステップ 1 では，①②と比較を行い③で文字の不一致が起こっ

ている．そこで，テキストの比較対象箇所の末尾(ここでは𝑇[4])に注目し，𝑃[0: 3]に𝑇[4]と同一の文字が存

在すれば，その位置と𝑇[4]が揃うようにテキストの比較対象箇所をずらす．この例では，𝑃[1]がそれに対応

するため，𝑇[4]と𝑃[1]が揃うように，テキストの比較対象箇所を 3文字ずらし𝑇[3: 7]とする．同様に，ステ

ップ 2 では④で不一致が起こり，𝑇[7]に注目する．𝑃[2]と𝑇[7]が揃うようにテキストの比較対象箇所を 2 文

字ずらす．ステップ 3 では⑤で不一致が起こり，𝑇[9]に注目する．𝑃[0: 3]には𝑇[9]と同一の文字はないので，

パターンの文字数分(5 文字)テキストの比較対象箇所をずらす． ステップ 4 では完全一致する様子を表し

ている．

このアルゴリズム StringMatch2では，探索に入る前に，パターンの各文字が最後に現れる位置に基づ

いて，不一致が起こった際の各文字のずらす量を事前に計算する．このようなアルゴリズムに対して次の

(4)〜(7)の問いに答えなさい．

(4) 図 5 は各文字のずらす量を保存するシフト表を求める関数の疑似コードである．空欄 D に当てはま

るコードを mと iを用いて答えなさい．

(5) パターンが𝑃=abcdeiabfeのとき，シフト表はどのようになるか求めなさい．

(6) StringMatch2 による文字列の照合を行う図 6 の疑似コード中の空欄 E 〜 H に当てはまるものを

次の(a)〜(o)の選択肢の中からひとつ選び，疑似コードが上記の StringMatch2 の文字列照合を表す

ように完成させなさい．

(a) i (b) j (c) m (d) n (e) i+1 (f) j+1 (g) i–1 (h) j-1

(i) i+j (j) i+m (k) i+m-1 (l) i+m+1 (m) i+n (n) i+n-1 (o) i+n+1

(7) StringMatch2において，𝑇=aciacadabgag，𝑃=abgaとしたとき，アルゴリズムが終了した時点で

の変数 sumの値を求めなさい．

 19

ステップ 1

ステップ 2

ステップ 3

ステップ 4

図 4 StringMatch2における照合の例

 20

図 5 シフト表作成関数

FUNCTION BuildShiftTable(P):

// P: パターン

// Pに基づいて ShiftTable(シフト表)を作成する

// 例えば，文字 aのずらす量が 5だった場合，

// ShiftTable['a'] ← 5

// と保存する

 m ← length(P) // length(X)は文字列 Xの長さを返す

// すべての文字のずらす量を mで初期化

 for c from 'a' to 'j' do

 ShiftTable[c] ← m

 end for

 for i from 0 to m − 2 do

 c ← P[i]

 ShiftTable[c] ← D

 end for

 return ShiftTable

end FUNCTION

 21

FUNCTION StringMatch2(T, P):

// T: テキスト

// P: パターン

shift ← BuildShiftTable(P) // シフト表の作成

 n ← length(T) // length(X)は文字列 Xの長さを返す

 m ← length(P)

 i ← 0

 sum ← 0 // 総比較回数

 while i ≤ n - m do

 j ← m - 1

 // 後ろから１文字ずつ比較

 while j ≥ 0 do

 sum ← sum + 1

 if T[E] == P[F] do

 j ← G

 else

 break while

 end while

 if j < 0 then
 // 完全一致したら，その添え字 i を返す
 return i
 end if

// シフト表に従ってテキストの比較対象部分をずらす
 c ← T[H]
 i ← i + shift[c]
end while

// 見つからなければ-1 を返す
return -1

end FUNCTION

図 6 StringMatch2の疑似コード

 22

問 2 (English version)

Consider a string-matching algorithm that searches a text string 𝑇 = 𝑇)𝑇"𝑇#…𝑇2%" of length 𝑁 for a pattern

string 𝑃 = 𝑃)𝑃"𝑃#…𝑃3%" of length 𝑀, and outputs the index of the starting position where the pattern first occurs in

the text. If the pattern appears multiple times in the text, the algorithm should return the smallest index where a match

begins. If the pattern does not occur in the text, the algorithm should return -1 and terminate. Assume 𝑁 ≥ 𝑀 ≥ 1, and

for simplicity, all characters are restricted to the 10 lowercase letters from ‘a’ to ‘j’, that is,
𝑇[𝑖]，𝑃[𝑗] ∈ {a,b,c,d,e,f,g,h,i,j} for 𝑖 = 0, 1, 2,⋯ , 𝑁 − 1, 𝑗 = 0, 1, 2, ⋯ , 𝑀 − 1.
For example, if 𝑇=abcdefghiabcdef and 𝑃=def , then the substrings in the text that match the pattern 𝑃)𝑃"𝑃#

are 𝑇!𝑇4𝑇5 and 𝑇"#𝑇"!𝑇"4. Since the match starting at index 3 occurs first, the algorithm should return 3.

Now, when implementing such a string-matching algorithm in a popular programming language, it is common to

represent strings as arrays. Accordingly, a string 𝑋 of length 𝑁 is represented as an array 𝑋[0:𝑁 − 1], where 𝑋[𝑚]

(for 0 ≤ 𝑚 ≤ 𝑁 − 1) denotes the character at index 𝑚 in the string 𝑋. Furthermore, 𝑋[𝑚: 𝑛] (for 0 ≤ 𝑚 < 𝑛 ≤

𝑁 − 1) represents the substring of 𝑋 from the 𝑚-th character to the 𝑛-th character, inclusive.

Figure 2 illustrates the behavior of an algorithm, referred to as StringMatch1, in which a pattern 𝑃=cfcaf is

compared against a text 𝑇=aceafadcadcfcaf. Starting from the first character of the text (i.e., index 0), the

algorithm compares the pattern with each candidate substring of length 𝑀 in the text, with the current position in the

text referred to as the comparison window, from left to right, one character at a time. If a mismatch occurs during

comparison, the algorithm shifts the comparison window in the text by one character to the right and repeats the

comparison with the pattern. Figure 2 shows the comparison process up to Step3. In Step 1, a mismatch occurs at

position ①. In Step 2, a mismatch occurs at position ③. In each case, the comparison window in 𝑇 is shifted by one

character to the right, as a result of a mismatch. Figure 3 shows the pseudocode for StringMatch1. Answer the

following questions (1) through (3) based on this information.

(1) Choose the appropriate options from choices (a) through (i) to fill in the blanks A to C , So that the

pseudocode correctly represents the string matching algorithm StringMatch1 described above.

(a) j>n (b) j<n (c) j>m (d) j<m (e) n (f) m (g) i (h) j (i) i+j

(2) Suppose 𝑇 =aciacadabgag and 𝑃 =abga. What is the value of the variable sum at the point when

StringMatch1 terminates?

(3) In StringMatch1, suppose a text of length 𝑁 and a pattern of length 𝑀. What is the maximum number of

character comparisons in terms of 𝑁 and 𝑀?

 23

Step1

Step2

Step3

Figure 2 An example of StringMatch1.

 24

Figure 3 The pseudocode of StringMatch1.

図 2 StringMatch1における照合の例
FUNCTION StringMatch1(T, P):

 // T: text indexed from 0 to N-1

 // P: pattern indexed from 0 to M-1

 n ← length(T) // length(X) return the length of X

 m ← length(P)

 // Examine the candidate substring of the text beginning at index i

 sum ← 0 // Total number of comparisons

 for i from 0 to n − m do

 j ← 0

 // Compare each character of the pattern one at a time

// from beginning

 while A do

 sum ← sum + 1

 if T[B] == P[C] then

 j ← j + 1

 else

 break while

 end if

 end while

 // Return the position i if an exact match occurs

 if j = m then

 return i

 end if

 end for

 // Return -1 if no match is found

 return -1

end FUNCTION

 25

In the search method used by StringMatch1, the comparison window in the text is shifted by one character every

time a mismatch occurs, resulting in low efficiency. To improve efficiency, we consider a more efficient algorithm,

referred to as StringMatch2. As is the case with StringMatch1, StringMatch2 searches for the pattern

starting from the beginning of the text; however, it compares characters from the end of the pattern toward the beginning,

one character at a time. When a mismatch occurs, StringMatch2 examines the last character of the current

comparison window in the text. Based on whether and where this character appears in the pattern, the algorithm

determines how far to shift the comparison window for the next attempt. Let this last character of the comparison

window be denoted as 𝑇[𝑘]. To decide the shift amount, we consider whether or not 𝑇[𝑘] appears in the prefix

𝑃[0:𝑀 − 2] of the pattern. There are two possible cases:

Ⅰ: 𝑇[𝑘] does not appear in 𝑃[0:𝑀 − 2];
Ⅱ: 𝑇[𝑘] does appear in 𝑃[0:𝑀 − 2].

In case Ⅰ, the comparison window in the text is shifted so that the next comparison starts at 𝑇[𝑘 + 1]. The new

substring 𝑇[𝑘 + 1: 𝑘 +𝑀] is then compared with 𝑃[0:𝑀 − 1], starting from the last character of the pattern. In case

Ⅱ, let 𝑗’ be the largest index 𝑗 ∈ {0, 1, … , 𝑀 − 2} such that 𝑃[𝑗] = 𝑇[𝑘]. The comparison window in the text is

shifted so that 𝑇[𝑘] aligns with 𝑃[𝑗’], and the pattern is compared with the new text substring starting from the last

character.

Figure 4 shows the first four steps of StringMatch2 for when 𝑇=aceafadcadcfcaf and 𝑃=cfcaf. At Step

1, Comparisons ① and ② find matches but Comparison ③ fails. At this point, the algorithm examines the last

character of the current comparison window in the text, which is 𝑇[4]. If this character appears in 𝑃[0: 3], the

comparison window is shifted so that this character is aligned with its rightmost occurrence in 𝑃[0: 3]. In this example,

since 𝑃[1] matches 𝑇[4], so the comparison window is shifted 3 characters to the right, aligning 𝑇[4] with 𝑃[1],

resulting in a new comparison substring 𝑇[3: 7]. Similarly, the mismatch found by Comparison ④ at Step 2 leads to

checking if 𝑇[7] appears in 𝑃, which results in a shift of 2 due to 𝑃[2] = 𝑇[7]. At Step 3, the first comparison in

the reverse comparison process at this position finds a mismatch. Because 𝑇[9] does not appear in 𝑃[0: 3], the

comparison window is shifted by the full length of the pattern, which is 5, to move on to the next reverse comparison

process. Step 4 finds an instance of 𝑃.

In the StringMatch2 algorithm, before starting the search, the shift amount for each character is precomputed

based on its last occurrence in the pattern string. Answer the following questions (4) through (7) regarding this algorithm.

(4) Figure 5 shows the pseudocode for a function that precomputes the shift table, which stores the shift amount for

each character. Fill in the blank D using variables m and i.

(5) Give the table of appropriate shifts for 𝑃=abcdeiabfe.

(6) Figure 6 is a pseudocode for the main part of StringMatch2, where the precomputed table is used for string

matching. Choose the appropriate options from (a) to (o) to fill in the blanks E through H so that the

pseudocode correctly represents the StringMatch2 algorithm.

(a) i (b) j (c) m (d) n (e) i+1 (f) j+1 (g) i–1 (h) j-1

(i) i+j (j) i+m (k) i+m-1 (l) i+m+1 (m) i+n (n) i+n-1 (o) i+n+1

(7) Suppose 𝑇 =aciacadabgag and 𝑃 =abga. What is the value of the variable sum at the point when

StringMatch2 terminates?

 26

Step1

Step2

Step3

Step4

Figure 4 An example of StringMatch2.

 27

Figure 5 The function to build the shift table.

FUNCTION BuildShiftTable(P):

// P: Pattern

// Build the shift table from the pattern P

// For example, if the shift amount for the character ‘a’ is 5:

// ShiftTable['a'] ← 5

 m ← length(P) // length(X) return the length of X

// Initialize the shift amount for all characters to m

 for c from 'a' to 'j' do

 ShiftTable[c] ← m

 end for

 for i from 0 to m − 2 do

 c ← P[i]

 ShiftTable[c] ← D

 end for

 return ShiftTable

end FUNCTION

 28

FUNCTION StringMatch2(T, P):

// T: text

// P: pattern

shift ← BuildShiftTable(P) // Shift table

 n ← length(T) // length(X) return the length of X

 m ← length(P)

 i ← 0

 sum ← 0 // Total number of comparisons

 while i ≤ n - m do

 j ← m - 1

 // Compare each character from the end, one at a time

 while j ≥ 0 do

 sum ← sum + 1

 if T[E] == P[F] do

 j ← G

 else

 break while

 end while

 if j < 0 then
 // Return the position i if an exact match occurs
 return i
 end if

// Shift the comparison window
// in the text according to the ShiftTable

 c ← T[H]
 i ← i + shift[c]
end while

// Return -1 if no match is found
return -1

end FUNCTION

Figure 6 The pseudocode of StringMatch2.

